Active Birth Pools News

March 2022

New midwifery research and studies

Water birth in Sweden – a comparative study

Waterbirth in low-risk pregnancy: An exploration of women’s experiences

Water birth: a national retrospective cohort study of factors associated with its use among women in England

A systematic meta-thematic synthesis to examine the views and experiences of women following water immersion during labour and waterbirth

The perceptions and experiences of women who achieved and did not achieve a water birth

Midwives’ experience of their education, knowledge and practice around immersion in water for labour or birth

Factors influencing water immersion during labour: qualitative case studies of six maternity units in the United Kingdom

Labouring women who used a birthing pool in obsteric units in Italy: prospective observational study

An economic evaluation of water birth

February 2022

The Active II Water Birth Pool – innovative design makes our pools safer and more user-friendly 

Launch of the revolutionary Venus II Water Birth Pool

These pools are the same width as the original models but slightly longer and marginally more expensive.

Space and budget permitting I suggest you consider the Active and Venus II Water Birth Pools as your first choice.

They are game changers that make a real difference to the experience of all concerned.

January 2022

Launch of Resource and Educational Centre

A comprehensive collection of publications covering all aspects of water birth, design, build and setting up of a water birth facilities. A one of a kind resource that is the product of our 35 years of dedication to serving the needs of mothers and midwives.

Categories:

Alternatively  – use the search field in the top right of the page to find the information you’re looking for.

December 2021

Active Birth Pool installed to create water birth facility in the Midriff Hospital in Dubai.

November 2021

“Freedom of Movement” now has over 11,000,000 views on YouTube

The simple, short video shows how mothers instinctively relate to our pools and move naturally to find the most comfortable, supportive and beneficial positions. Watch on YouTube

 

 

WHY US?

We like to think that after 35 years of dedication to the development of highly specialised pools for labour and birth that we’ve got it right.

Our driving passion for design, quality and performance has resulted in today’s award winning range of water birth pools.

Mothers and midwives love our pools because they are comfortable, practical and easy to use.

Buyers like the fact that they’re the safest on the market, built to last for decades and guaranteed for life.

Active Birth Pools are arguably the finest water birth pools on the market.

Click here to find out why

We know that our water birth pools offer unbeatable safety, value and performance and that mothers and midwives find them beautiful, tactile and incredibly easy to use.

But, please don’t just listen to us:

See what our clients and associates say.

Features that set our pools apart

Over the past 35 years we have supplied 1,000’s of water birth pools to hospitals world-wide.

We have worked closely with end users and industry experts to continually develop and improve our capabilities.

This unrivalled wealth of experience enables us to design water birth pools of superior quality that are acknowledged as the industry standard.

Our approach is fuelled by a passion for optimising safety and performance.

As a result of advances in design, materials and manufacture our water birth pools have evolved to the point where they are in a class all their own.

Our innovative approach to design results in pools that are highly functional and appealing from both a psychological and physical perspective.

The curvaceous forms allow midwives and mothers to interact intuitively with each other and the pool.

Thanks to the unique properties of Ficore® – we have been able to realise highly durable pools with sophisticated designs that place us at the top of the market.

A defining feature and key to our success is the extra-wide, round rim that flows around our pools.

The bullnose shape rim flows over and down hugging the form of the pool  to the floor in one seamless piece of ultra-high grade composite resin.

Distinctive features set our pools apart and make them most comfortable, practical, safe and user-friendly available.

It’s safe and easy for mothers to get in and out of our pools

In a wet environment there is increased risk of slipping.

Issues relating to Health and Safety, Manual Handling and plain common sense must be considered.

Manual handling experts strongly advise against the use of step units 

Multi-step units are commonly used but, they present critical safety risks, even if they have a handrail.

To have mothers in strong labour climb up, step over the rim and down into the pool is not safe or practical.

These step units take up too much space, obstruct movement around the pool and are a trip hazard.

The Active Birth Pools way

The extra-wide rim and step unit make easy and safe for mothers to get in and out of our water birth pools.

Provision of a compact, single step gives the mother a height advantage.

She can step up – sit on the extra-wide rim and swivel into the water.

There is no climbing – she is grounded at all times and safeguarded from risk.

A simple, safe and economical solution.

The maths: 

When we looked at the dynamics at play we considered short women specially as taller women don’t even need the step!
A women 150cm (4’11”) tall has an inseam of about 68cm (27″).
The step is 15cm (6″)high. The rim is 75cm (29.5″)
Standing on the step she is has inner leg height of 83cm (33″) and can easily sit down on the rim and swivel in.

We’ve posted a short video on YouTube showing  just how easy it is for mothers to get into our water birth pools –please have a look

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Dealing with emergencies

Active Birth Pools give midwives safe, practical options for dealing with emergencies.

The evacuation a collapsed woman is potentially hazardous and poses risk of injury to mother and midwife.

If the need for an emergency evacuation arises the midwife should:

  1. summon help
  2. stabilise the mother
  3. turn the taps on to raise the water to rim level.

The buoyancy of the water reduces the relative weight of the mother by approximately 33% making it easier to move her and effect safe evacuation.

Midwives should float/move the mother onto a seat or support and hold her safely until help arrives.

Basics:

  1. The mother should be screened to ensure that she meets the inclusion criteria prior to entering the birth pool.
  2. Continuous risk assessment is essential to reduce the incidence of emergencies in the pool.
  3. At the first sign of a contraindication the mother should be asked to get out of the water and assisted from the pool for monitoring and care.
  4. If the mother is unable to leave the pool under her own power or has collapsed an emergency evacuation will need to be conducted.
  5. A trolley should be available
  6. for the mother to be moved onto.
  7. Care must be taken that proper lifting techniques are employed to avert strain & injury.

Example 1: Emergency evacuation utilising the labour support seat

DSC_5440

The mother has been moved onto and held on the labour support seat

DSC_5449

The midwives guide the mother onto rim by sliding her up the side of the pool

Once on the rim she can be easily transferred onto a trolley

DSC_5456

Example 2) Emergency evacuation utilising the safety seat

DSC_5469

The mother is moved into position under the safety seat

DSC_5471

The midwives glide her up the side of the pool

DSC_5473

Onto the safety seat,

and then onto the rim for transfer onto the trolley

DSC_5483

Active Birth Pools are portable hoist compatible

Manual Handling advisors may insist that women are evacuated from the birth pool with a hoist and that this facility is provided for.

Active Birth Pools are designed to accommodate a portable hoist should the need arise.

Clinical Guidelines – Royal Cornwall Hospital

Clinical Guidelines – Royal Worcester Hospital

Guideline for the Management of Women Requesting Immersion in Water  – Norfolk and Norwich University Hospitals

Operational Policy and Clinical Guidelines – Abbey Birth Centre

Birthspace: An evidence-based guide to birth environment design – Queensland Centre for Mothers and Babies

Use of water for labour and birth – Hywel DDA Local health Board

Guidelines for use of pool during labour and delivery – East Cheshire NHS Trust

Guiding principles for midwifery care during normal labour – Barking, Havering and Redbridge NHS Trust

Waterbirth care during labour for low risk women – Sandwell and West Birmingham Hospitals

SaveSave

SaveSave

Photos and plans

We’ve utilised evidence-based, user-centred design to develop highly specialised pools for labour and birth.

Every shape, every curve, every varying degree of rounded corner…

there’s a reason for them.

Active Birth Pool

Active II Water Birth Pool

Venus Water Birth Pool

 

Venus II Water Birth Pool

 

Princess Water Birth Pool

 

CAD and 3D modelling plans available upon request

Related information:

SaveSave

Delivery and Installation

Delivery, Moving and Handling

Mainland UK Deliveries

Active Birth Pools delivered within the mainland UK are wrapped in protective packaging and placed in double walled boxes with corrugated sides.

The pools are delivered by our dedicated carrier on a week commencing basis.

If you require delivery on a specific date or at a specific time please contact us for a quote.

Box Size and Weight

  • Active Birth Pool:  1880 x 1690 x 790mm 100 kg
  • Venus Birth Pool: 1960 x 1390 x 790mm 90 kg
  • Princess Birth Pool: 1640 x 1140 x 790mm 80 kg

The carrier will deliver your birth pool to the receipt and distribution point.

You’ll be responsible for moving it to the room where it will be installed.

The pool should be moved from the delivery point in its cardboard box by turning it gently on its side onto a movers dolly or two.

This will enable it to be easily moved along corridors and through doorways.  Once the pool is in the room where it will be installed carefully open the cardboard box and remove the protective packaging.

Outside Mainland UK and International Deliveries

Active Birth Pools that are delivered outside the mainland UK are wrapped in protective packaging and placed in timber framed crates with plywood sides that conform to ISPM15 and are stamped accordingly.

Crate Size and Weight

  • Active Birth Pool:  1910 x 1720 x 890mm 200 kg
  • Active II Water Birth Pool: 2050 x 1810 x 970mm 220kg
  • Venus Birth Pool: 1950 x 1420 x 890mm 185 kg
  • Venus II Water Birth Pool: 2050 x 1420 x 890mm 205kg
  • Princess Birth Pool: 1670 x 1170 x 890mm 145 kg

The birth pool should be unpacked from the timber crate but left in its protective packaging for moving from the delivery point to the room where it will be installed.

The pool should be gently turned on its side onto a padded movers dolly or two to  enable it to be easily moved along corridors and through doorways. It’s best to handle the pool by the rim as this is the strongest point.

Installation

Prior to moving the birth pool into position against the wall the plumbing (taps and drainage) and electrical services should be in place ready for final connection to the pool.

Taps

Fix a 3/4″ thermostatically controlled mixer tap with a 150mm spout on an IPS panel 25 cm above the rim of the pool (rim height 75cm).

We suggest that you consider the Rada Sense Bath T3 (or similar) as it is a digital tap that not only enables you to programme the http://activebirthpools.com/wp-content/uploads/2015/10/Rada-1.pdfwater temperature but also the fill time.

A filling time of 20 – 25 minutes is acceptable.

Drainage

The pool is supplied with a bespoke brass 40mm pop up waste that is operated by a control that is fixed to the rim.

The waste is connected to a P Trap  and a McAlpine T25 adaptor

Height from the floor to the centre of the T25 adaptor is 11cm

From the T25 adaptor you can utilise of a wide variety of commonly available parts to connect to the pipework of the buildings drainage system.

When electrical and plumbing services are in place and ready for the final connection to the pool’s systems the pool should be moved into position and fixed to the floor.

Final connection of services can be carried out through the access panel when the pool is secured in place.

Fixing the birth pool to the floor

All feet MUST be in solid contact with the floor.

If the floor is not level or smooth be sure to adjust the feet or level the floor so that all of the feet are in firm contact with the floor and there is no rocking or movement.

The bottom flange of the outer panel should be in contact with the floor but is not the primary support structure of the pool and must not bear the full weight of the filled birth pool.

The water birth pool is supplied with 3 x 100 mm x 30 mm fixing brackets.

You’ll find the brackets taped to the pool just inside the access panel that can be opened with a 10mm Allen Key.

It is essential these brackets are securely fixed to the floor with suitable hardware to immobilise the pool and prevent it from moving when empty.

Failure to secure the pool to the floor with the fixing brackets will endanger the end user and VOID the guarantee.

Locating and fixing the brackets

Step 1: All Models:

Mark the central position of the water birth pool on the wall that it is being fitted on.

Step 2:  Active Birth Pool – front fixing bracket

Measure 1220 mm from the centre point on the wall and mark this as the point to locate the bracket so that the long flat piece is projecting away from the wall and the raised short section faces forward into the room.

Fix the bracket to the floor using suitable hardware.

Front bracket right centre – Back bracket lower left

Step 2:  Active II Water Birth Pool – front fixing bracket

Measure 1330 mm from the centre point on the wall and mark this as the point to locate the bracket so that the long flat piece is projecting away from the wall and the raised short section faces forward into the room.

Fix the bracket to the floor using suitable hardware.

Front bracket right centre – Back bracket lower left and right

Step 2: Venus Birth Pool – front fixing bracket

Measure 1070 mm from the centre point on the wall and mark this as the point to locate the bracket so that the long flat piece is projecting away from the wall and raised short section faces forward into the room.

Fix the bracket to the floor using suitable hardware.

Front bracket right centre – Back bracket lower left

Step 2: Venus II Water Birth Pool

– front fixing bracket

Measure 1330 mm from the centre point on the wall and mark this as the point to locate the bracket so that the long flat piece is projecting away from the wall and the raised short section faces forward into the room.

Fix the bracket to the floor using suitable hardware.

Front bracket right centre – Back bracket lower left and rightt

Step 2: Princess Birth Pool Pool – front fixing bracket

Measure 1020 mm from the centre point on the wall and mark this as the point to locate the bracket so that the long flat piece is projecting away from the wall and raised short section faces forward into the room.

Fix the bracket to the floor using suitable hardware.

Front bracket right centre – Back bracket upper left

Step 3: All Models

Place the birth pool at least 60 mm away from the rear wall before moving it onto the bracket and flush against the wall.

Push the birth pool towards the wall so that the flange of the pool slides under the bracket.

This secures the front of the pool to the floor.

Step 4: All Models – back fixing bracket

The 2nd fixing bracket should be fixed in position on the bottom flange of the pool below the access panel as indicated in the images above.

You will see that a hole has been drilled in the flange. Line the bracket up with this hole. You can fix the pool to the floor with a raw plug and suitable hardware to guarantee that it is secure.

The long flat piece should be fixed to the floor with suitable hardware so that the short section is holding the flange securely to the floor.

Step 5: All Models

Seal the water birth pool to the floor and wall using a suitable sealant to prevent ingress of water and dirt.

Multi-Colour LED Lighting

Installation

Connect the light to a circuit breaker, then to the power supply.

The system should be protected by a 6 AMP RCD with 30 -32 MA Sensitivity.

The LED is transformed down to 12 volts and has a power rating of 2.5 watts.

A separate means of Isolation should be provided for future maintenance.

Operating voltage 220/230 volts – 50/60 hertz

Operating instructions

The system is operated by the control pad on the rim of the pool.

To activate the system press the button once.

The white light will come on.

To choose another colour continue to press the button and the system will cycle through the range of colours – light blue, blue, purple, magenta, red, pink, orange, yellow, apple green and green.

To turn the system off press and hold the button down for 2 seconds.

The light should be switched off when the pool is not in use.

Bluetooth Sound System

Connect the factory fitted bluetooth sound system to a circuit breaker and then to the power supply.

The system is always on standby waiting for users to pair and connect.

It’s operated directly from the users mobile phone or bluetooth enabled device and has no controls of its own.

N.B. If there is more than one birth pool with bluetooth sound being installed in the same unit you will need to fit a remote switch to enable the users to turn the system on and off.

This is to prevent people accidentally activating the system instead of the one in their room.

Transducer speaker

  • Frequency Range 20Hz-20KHz.
  • Maximum Power Output 50W at 4 Ohm.

Bluetooth Amplifier

  • Transmission Range 5m to 10m.
  • Maximum Power Output 2ch X 20W.
  • Operating voltage 220/230 volts – 50/60 hertz
  • Transformed Voltage 12 Volt DC / 3 amp.
  • Waterproof Rating IP67.

Cleaning and Care:

Safety comes 1st!

Active Birth Pools  are Rated No.1 for water safety and infection control standards.

This is because the material we use (Ficore) is 5 x harder than other materials and is immune to the effects of disinfection with 10,000ppm hypo-chlorite.

Seamless one-piece construction and the absence of surface mounted metal work deny micro-organisms the environment they need to propagate.

Active Birth Pools Cleaning and Disinfection Guidelines

This is a two-step procedure – first cleaning of the pool and surround, then disinfection of the pool and surround.

  1. Prior to emptying the pool remove debris and larger particles from the water with a sieve to prevent it from blocking or obstructing the outlet.
  1. Use the standard infection control precautions (plastic apron, disposable gloves and eye protection) when cleaning the pool. Ensure the area is well ventilated.
  1. Cleaning – use a non-abrasive detergeant with non-abrasive sponge or cloth to thoroughly clean the pool. Ensure the tap is cleaned first, so as not to transfer micro-organisms from the “dirty” pool area to the cleaner tap region. Rinse well with warm water.
  1. Disinfecting – use chlorclean or similar hypochlorite disinfectant following the directions on the packet for mixing the solution to the correct concentration for disinfecting the birth pool and surround.  Do not use bleach as it is highly corrosive and could cause damage to the fittings.
  1. Apply the solution to the tap and spout prior to disinfecting the pool.
  1. There are 3 methods for disinfecting the pool that are commonly used in hospitals:

1) Fill the pool with cold water and add the requisite amount of disinfectant – leave for ten minutes.

The advantage of this method is that it is 100% effective but wasteful of water, time consuming and uses a large amount of disinfectant

2) Make up 2-3 litres of solution and pour it around the inside of the rim. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected.

3) Fill a spray bottle with disinfectant and thoroughly spray the surface of the pool and surround. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected

  1. Open the drain outlet and empty the pool of the disinfectant.
  1. Using cold water, rinse the tap then the pool to remove all traces of the disinfectant, to prevent any residue being left on the pool surface.
  1. Dry the entire surface of the pool using a new cloth or disposable mop head.
  1. Keep the drain outlet closed when not in use.

If you are duty flushing the taps with hot water/steam add a few inches of cold water to the pool first.

Damage resulting from higher water temperatures, steam cleaning or use of products not approved by Active Birth Pools will not be covered by our guarantee.

Protocols from hospitals using Active Birth Pools.

How to restore your old birth pool to pristine condition:

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

http://www.amazon.co.uk/Waterline-Cleaning-removes-lines-cleaner/dp/B006DFD7VK

Related information:

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Cleaning and Care

Safety comes 1st!

Active Birth Pools  are Rated No.1 for water safety and infection control standards.

This is because the material we use (Ficore) is 5 x harder than other materials and is immune to the effects of disinfection with 10,000ppm hypo-chlorite.

Seamless one-piece construction and the absence of surface mounted metal work deny micro-organisms the environment they need to propagate.

Active Birth Pools Cleaning and Disinfection Guidelines

This is a two-step procedure – first cleaning of the pool and surround, then disinfection of the pool and surround.

  1. Prior to emptying the pool remove debris and larger particles from the water with a sieve to prevent it from blocking or obstructing the outlet.
  1. Use the standard infection control precautions (plastic apron, disposable gloves and eye protection) when cleaning the pool. Ensure the area is well ventilated.
  1. Cleaning – use a non-abrasive detergeant with non-abrasive sponge or cloth to thoroughly clean the pool. Ensure the tap is cleaned first, so as not to transfer micro-organisms from the “dirty” pool area to the cleaner tap region. Rinse well with warm water.
  1. Disinfecting – use chlorclean or similar hypochlorite disinfectant following the directions on the packet for mixing the solution to the correct concentration for disinfecting the birth pool and surround.Do not use bleach as it is highly corrosive and could cause damage to the fittings.
  1. Apply the solution to the tap and spout prior to disinfecting the pool.
  1. There are 3 methods for disinfecting the pool that are commonly used in hospitals:

1) Fill the pool with cold water and add the requisite amount of disinfectant – leave for ten minutes.

The advantage of this method is that it is 100% effective but wasteful of water, time consuming and uses a large amount of disinfectant

2) Make up 2-3 litres of solution and pour it around the inside of the rim. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected.

3) Fill a spray bottle with disinfectant and thoroughly spray the surface of the pool and surround. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected

  1. Open the drain outlet and empty the pool of the disinfectant.
  1. Using cold water, rinse the tap then the pool to remove all traces of the disinfectant, to prevent any residue being left on the pool surface.
  1. Dry the entire surface of the pool using a new cloth or disposable mop head.
  1. Keep the drain outlet closed when not in use.

Please note: If you want to use a product that is not chloride based please contact us for approval.

Damage resulting from higher water temperatures, steam cleaning or use of products not approved by Active Birth Pools will not be covered by our guarantee.

If you are duty flushing the taps with hot water/steam add 10cm of cold water to the pool first.

Protocols from hospitals using Active Birth Pools.

 

How to restore your old birth pool to pristine condition

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

http://www.amazon.co.uk/Waterline-Cleaning-removes-lines-cleaner/dp/B006DFD7VK

Related information:

 

Water Birth Safety Initiative

Hospitals in the United Kingdom began allowing women to use specially designed pools of water for labour and birth during the 1980’s.

The wide-spread popularity and acceptance of water birth pools as a standard part of the maternity care package necessitated the development of guidelines & regulations to define standards and ensure they’re met.

The United Kingdom Department of Health has published a panoply of water safety directives that apply to water birth pools.

Policies and recommendations set forth in the Water Birth Safety Initiative are based upon these publications.

The Water Birth Safety Initiative (WBSI) calls for development of international standards modelled on the UK’s so that women the world over can benefit from the use of water for labour and birth safeguarded from risk.

The WBSI calls for the implementation of stricter protocols and sets forth recommendations for equipment standards.

The guidelines set forth in the WBSI are intended to serve as a framework of standards for birth pool suppliers, hospitals and midwives to work with to establish  safe codes of practice.

Guidelines for Water Birth Pools Installed in Hospital

Water is more prone to bacteria growth after it leaves the public water distribution system and enters a building’s plumbing.

There it finds warmer temperatures, stagnation, and smaller pipes, valves and fittings.

Biofilm that forms on valves and fittings and pipe walls not only feeds bacteria but also protects them from the hot water and chlorine that typically would kill free-floating organisms.

Large systems with complex piping networks — like those found in hospitals, hotels and large apartment buildings — are especially prone to bacteria growth.15

Water Birth Pools that are installed in hospitals have the benefit of being maintained by staff to ensure that protocols are established, met and maintained.

Consideration and due diligence with regard to the prospective purchase of water birth pools and the assessment of pools already in use needs to be taken to ensure that the associated plumbing and electrical systems meet relevant safety standards.

The United Kingdom’s Department of Health and National Health Service has an exemplary safety record achieved by establishing rigorous sets of guidelines and regulations for the design, installation, use and maintenance (cleaning/disinfection) of water birth pools.

In the UK water birth pools are classed as a Category Fluid 5 water risk which represents a serious health hazard due to the concentration of pathogenic organisms, radioactive or very toxic substances, e.g. containing faecal material or other human waste; butchery or other animal waste or pathogens.

Water Birth Pools must be installed in compliance with water regulations as set forth in The Water Supply (Water Fittings) Regulations 1999.11

The 7 sins of water safety

To ensure high standards are met it is strongly advised that you do not use a water birth pool that has any of these features:

  1. Overflow drains
  2. Internal water inlets
  3. Hand-held showers
  4. Systems with flexible hoses or extended pipes
  5. Integral or secondary plumbing systems
  6. Any type of recirculating or pumped water systems such as whirlpool, jacuzzi, spa, bubbling, filtering etc
  7. Heating systems

1) Overflow drains

Overflow drains harbour bacteria and can serve as a conduit for cross infection.

Regulations are very clear on this point – overflow drains should not be installed on water birth pools as they constitute a constant infection control risk much more significant than the possible risk of damage due to water overflowing.11,12

Some digital taps on the market can be set for filling time thus obviating the risk of the pool overflowing.

2) Internal water inlets

Internal water inlets act in place of taps to fill the pool.

They are installed on the inside of the pool just above the water line and connected with pipework to a thermostatic valve.

If the water level rises there is a high risk of back flow enabling bacteria to enter the system creating a risk of cross infection.7

3) Handheld showers

Handheld showers present a significant infection control risk due to the fact that they can fall in the pool and be contaminated with bacteria that could breed and be passed on next time the shower is used.

Department of Health regulations clearly stipulate that handheld showers and bath/shower mixers are not installed for use with water birth pools. 13

Handheld showers present a Fluid Category 5 risk to the mains water supply.

It must not be possible to submerge the showerhead in the water due to risk of cross infection.

In order to comply with category 5 water regulations covering back siphonage, a class AUK3 air gap would be required, which generally prevents the use of handsets, unless there is a separate break tank installed in the hospital plumbing system.

4) Systems with flexible hoses or extended pipes

Systems that employ flexible piping, have branch pipes or hold stagnant water present a potential hazard and must not be used with water birth pools.

It is impossible to clean, disinfect or monitor these systems.

They have been proven to be a source of Legionella and Pseudomonas. 14

Weekly flushing recommendations recommended by the department of health cannot be executed with such systems, and the effectiveness of this cannot be monitored due to the inacessibility of the closed system.

5) Integral or secondary plumbing systems

Integral, secondary or proprietary plumbing systems are fitted to some water birth pools.

As these systems can employ flexible and non-flexible piping, overflow drains, handheld showers and are often pumped or recirculating they present a significant infection control risk and should be banned from use.

Regulations stipulate that water birth pools are filled from thermostatically controlled wall mounted mixer taps plumbed directly into the hospitals water supply with the minimum of pipework.

Not only do secondary or integral plumbing systems present unacceptable risks, they are impossible to clean, disinfect or monitor and therefore present an extremely high and unacceptable infection control risk.

They must not be present on pools used for labour and birth. 10

6) Recirculating or pumped water systems

Recirculating or pumped water systems such as whirlpool, jacuzzi, spa, bubbling, filtering etc. have the perfect environmental conditions to be a potential source for the growth of microorganisms, including legionella bacteria and must not be installed on water birth pools.

Water systems that are able produce aerosols represent the highest levels of risk.

Aerosols can be generated very easily when the water surface is broken -for example, by falling water droplets, splashing, or by bubbles breaking at the surface.

Once introduced to artificial water systems, Legionella can thrive in warm water (30 – 35 °C) and has been shown to be present on flexible seals and metal surfaces within plumbing systems used in domestic potable water supplies.

Inadequately maintained spa pools (birth pools with pumped or recirculating systems) provide ideal conditions to support the growth of legionellae and other microorganisms, which may then become aerosolised and subsequently inhaled.15


7) Heating systems

Heating systems for water birth pools are not necessary and present unacceptable infection control risks.7

There are two types of heating systems in use:

1. Recirculating system with a heat exchanger

Water is pumped out of the pool and through a heat exchanger and then flows back into the pool.

These systems present one of the highest infection control risks and should not be installed on a water birth pool under any circumstances. (covered by points 4, 5 and 6 above).

2. Electric heating systems

Similar to under floor heating found in homes do not present an infection control risk.

But, they do present an unacceptable health and safety risk and should therefore not be installed in water birth pools.

These systems consist of a network of cables embedded in the fabric of the birth pool that are attached to the power supply through a thermostat.

The heat is transmitted from the cables through the floor of the pool and then transferred to the water.

The inherent problem with these systems is that the water is relied on to take the heat away from the material.

If a woman remains motionless the heat becomes concentrated and a “hotspot” develops which can result in the woman being burned.

Recommendations

Plumbing for filling and emptying water birth pools should be simple, straight forward and kept to the minimum.

A set of taps (see below) mounted on the wall 15cm above the rim and a drainage system similar to that of a normal bath is all that is required.

Rim mounted taps present two areas of risk:

1. Women may hit their head on taps that are mounted on the rim of the pool causing injury.

In the throes of labour a woman is not as cognisant of her surroundings as she normally is.

She needs to be protected from the potential harm that could result from hitting her head or other part of her body on the spout.

2. Risk to the taps and pool caused by the labouring woman grabbing onto the spout for support could easily cause damage to the fitting or fabric of the pool.

Filling the birth pool

Water Birth Pools should be filled directly from the hospitals main water supply through a ¾ Thermostatic Mixing Valve (TMV).

To comply with UK National Health Service regulations the valve must have TMV3 approval for use in Healthcare and Commercial situations and certify that it conforms to the performance requirements of the Department of Health.16

To kill legionella and other bacteria, water in hospitals systems is heated to 60 – 80 °C.

Water temperature entering the birth pool should be limited by the TMV to 44 °C to prevent scalding.

The added benefit of using a TMV connected directly to the hospitals main water supply is that it can be set to automatically flush itself of stagnant water twice a day and be thermally disinfected periodically.

dsc_2965

The use of a TMV ensures a safe water supply.

Digital thermostatic mixing valves with enhanced thermal performance that incorporate these features are ideal:

1) Programmable control to accurately mix and maintain the temperature of the water flowing into the birth pool and limit the temperature of the water to 44 °C to prevent scalding.17

2) Programmable fill duration to fill the pool to the desired depth and then turn off.

This is important as water birth pools are not allowed to have overflow drains installed and this feature will prevent the pool from overflowing when unattended.

3) Programmable duty flushing to ensure that water does not stagnate within the tap and associated pipe work, effectively controlling the multiplication of legionella & other bacteria in infrequently used outlets.

Flushing duration is in line with HSE L8 recommendations.18

4) Programmable high-temperature thermal disinfection to destroy the proteins in viruses and bacteria and render them as dead or inert.

Thermal disinfection works by achieving a moist heat which is set at a specific temperature for a set amount of time.

Viruses and bacteria are very sensitive to heat and they will die if exposed to higher temperatures. 19

Emptying the Pool

Water from a birth pool needs to be treated as Fluid category 5 waste representing a serious health hazard due to the concentration of pathogenic organisms derived from fecal material or other human waste and emptied directly into the hospital’s waste water system.20

The pipework needs to have a trap or U bend fit as close to the waste/drain as possible.

The drainage fitting or waste should seal neatly into the drain.

The drainage fitting should be cleaned and flushed through with disinfectant and then dried as part of the cleaning protocol.

The waste should be kept closed when the pool is not in use.

There should be NO flexible pipe used in the drainage pipework.21

The waste should be remotely operated (i.e. pop up waste with rim mounted control) and of the best quality, preferably high-grade brass, to resist the corrosive action of chlorides and other disinfectants.

DSC_2915

End notes

The Water Birth Safety Initiative was conceived by Keith Brainin to motivate and enable birth pool suppliers and health care professionals to raise standards and implement protocols to make water birth safe.

References

[1] Healio – Infectious Disease News. (2014, December 26). Legionellosis death after water birth sparks call for stricter infection control protocols. http://www.healio.com/infectious-disease/practice management/news/online/%7Bfe352169-755d-4d21-9bb2-abb8ae209f89%7D/legionellosis-death-after-water-birth-sparks-call-for-stricter-infection-control-protocols

[2] Inquisitr. (2015, January 16). Oregon Water Birth Leaves Baby Disabled, Lawsuit Wants Labor Options Banned. http://www.inquisitr.com/1761136/oregon-water-birth-leaves-baby-disabled-lawsuits-wants-labor-options-banned/

[3] GOV.UK. Alert after Legionnaires’ disease case in baby, 2014. https://www.gov.uk/government/news/alert-after-legionnaires-disease-case-in-baby

[4] The Guardian. Legionnaires’ disease in baby is linked to heated birthing pool, June 17, 2014.http://www.theguardian.com/society/2014/jun/17/legionnaires-disease-heated-birthing-pool-baby-public-health

[5] Guidance from the  Water Regulations Advisory Scheme (WRAS) https://www.wras.co.uk/consumers/advice_for_consumers/what_are_the_water_regulations_/

[6] M.W. LeChevallier, 2003 World Health Organization (WHO). Conditions favouring coliform and HPC bacterial growth in drinking- water and on water contact surfaces. Heterotrophic Plate Counts and Drinking-water Safety. Edited by J. Bartram, J. Cotruvo, M. Exner, C. Fricker, A. Glasmacher. Published by IWA Publishing, London, UK. ISBN: 1 84339 025 6.

[7] www.gov.uk. Public Health England advice on home birthing pools, 2014.  https://www.gov.uk/government/news/public-health-england-advice-on-home-birthing-pools

[8] Health and Safety Executive. (2013). Legionnaires’ disease: Technical guidance [3.4], 2013. http://www.hse.gov.uk/pubns/priced/hsg274part3.pdf

[9] United Lincolnshire Hospitals NHS Trust UK. Cleaning, Disinfection and Sterilization Guidelines for Re-Usable Medical Devices 2010.
http://www.activebirthpools.com/wp-content/uploads/2014/05/Lincolnshire-CLEANING-DISINFECTION-AND-STERILIZATION-GUIDELINES-FOR-RE-USABLE-MEDICAL-DEVICES.pdf

[10] http://www.eurosurveillance.org. Case of legionnaires’ disease in a neonate following an home birth in a heated birthing pool. England, June 2014 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20857

[11] Water Regulations Advisory Scheme (WRAS). Fluid Categories. https://www.wras.co.uk/consumers/resources/glossary/fluid_categories/

[12] WHBN 00-10 Welsh Health Building Note. Part C: Sanitary assemblies2014, http://www.wales.nhs.uk/sites3/documents/254/WHBN%2000-10%20Part%20C.pdf

[13] Department of Health, Children, young people and maternity services. Health Building Note 09-02: Maternity care facilities, 2009.
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/147876/HBN_09-02_Final.pdf

[14] Freije, Matthew R. Some waterborne bacteria are tough, 2010. http://www.watertechonline.com/articles/some-waterborne-bacteria-are-tough

[15] Woolnough, Kevin. Legionella Expert Calls for Greater Vigilance, 2014. http://www.eurofins.co.uk/news-archive/legionella-expert-calls-for-greater-vigilance.aspx

[16] BEAMA. TMV Standards and regulations, 2013. http://www.beama.org.uk/en/product-areas/heating-hot-water–air-movement/thermostatic-mixing-valves/tmva-faqs-on-thermostatic-mixing-valves/tmv-standards-and-regulations.cfm

[17] Health and Safety Executive. Managing the risks from hot water and surfaces in health and social care, 2012. http://www.hse.gov.uk/pubns/hsis6.pdf

[18] Health and Safety Executive. Legionnaires’ disease The control of legionella bacteria in water systems, 2013. http://www.hse.gov.uk/pubns/priced/l8.pdf

[19] Health and Safety Executive. Managing legionella in hot and cold water systems. http://www.hse.gov.uk/healthservices/legionella.htm

[20] SMS Environmental – the water experts. Fluid Categories. http://www.sms-environmental.co.uk/fluid_categories.html.

[21] Nottingham University Hospitals NHS Trust. Legionella Management and Control Procedures, 2014.

Bibliography

  • Ashford and St. Peter’s Hospitals, Women’s Health and Paediatrics Division (Abbey Birth Centre). Operational Policy and Clinical Guide, 2014.
  • BASINGSTOKE AND NORTH HAMPSHIRE NHS FOUNDATION TRUST . CLEANING, DISINFECTION AND STERILISATION POLICY. Prod. Helen Campbell. BASINGSTOKE AND NORTH HAMPSHIRE, BASINGSTOKE AND NORTH HAMPSHIRE, 2010.
  • BEAMA. TMV Standards and regulations. 2013. http://www.beama.org.uk/en/product-areas/heating-hot-water–air-movement/thermostatic-mixing-valves/tmva-faqs-on-thermostatic-mixing-valves/tmv-standards-and-regulations.cfm (accessed 2014 йил 24-09).
  • Buckinghamshire Healthcare NHS Trust. Water birth and use of water in labour guideline. Prod. Miss G Tasker and Audrey Warren. 2013.
  •  Dekker, Rebecca. “Evidence on the Safety of Water Birth.” http://evidencebasedbirth.com/. 2014. http://evidencebasedbirth.com/waterbirth/ (accessed 2014 10-09).
  • Department for Environment, Food and Rural Affairs. Water Supply (Water Fittings) Regulations 1999 Guidance Document relating to Schedule 1: Fluid Categories and Schedule 2: Requirements For Water Fittings. 1999. http://archive.defra.gov.uk/environment/quality/water/industry/wsregs99/documents/waterregs99-guidance.pdf.
  • Department of Health. Children, young people and maternity services Health Building Note 09-02: Maternity care facilities. 2009.

—. “Health Building Note 00-09: Infection control in the built environment.” www.gov.uk. 2002. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/170705/HBN_00-09_infection_control.pdf (accessed 2014 6-12).

—. “Health Technical Memorandum 64: Sanitary assemblies.”  2006. http://www.wales.nhs.uk/sites3/documents/254/HTM%2064%203rded2006.pdf (accessed 2014 10).

—. “Water systems Health Technical Memorandum 04-01: Addendum” .2013. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/140105/Health_Technical_Memorandum_04-01_Addendum.pdf (accessed 01 2014-10).

 —. “Water systems Health Technical Memorandum 04-01: The control of Legionella , hygiene, “safe” hot water, cold water and drinking water systems”. 2006.

  • DH, Estates & facilities. Water systems Health Technical Memorandum 04-01: Addendum . Department of Health, Department of Health.
  • Elizabeth R Cluett, Ethel Burns. Immersion in water in labour and birth. 2009.http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD000111.pub3/abstract (accessed 2013 13-05).
  • Elyse Fritschel, Kay Sanyal, Heidi Threadgill, and Diana Cervantes. Emerging Infectious Diseases.CDC. Centers for Disease Control and Prevention. CDC. 2014. http://wwwnc.cdc.gov/eid/article/21/1/14-0846_article (accessed 2015 5-January).
  • Freije, Matthew R. Some waterborne bacteria are tough . 2010. http://www.watertechonline.com/articles/some-waterborne-bacteria-are-tough (accessed 2015 20-01).
  • GOV.UK. Alert after Legionnaires’ disease case in baby. 2014. https://www.gov.uk/government/news/alert-after-legionnaires-disease-case-in-baby (accessed 2014 3-12).
  • GOV.UK. Public Health England advice on home birthing pools. 2014. https://www.gov.uk/government/news/public-health-england-advice-on-home-birthing-pools (accessed 2014 03-August).
  • Healio – Infectious Disease News. Legionellosis death after water birth sparks call for stricter infection control protocols. 2014. http://www.healio.com/infectious-disease/practice-management/news/online/%7Bfe352169-755d-4d21-9bb2-abb8ae209f89%7D/legionellosis-death-after-water-birth-sparks-call-for-stricter-infection-control-protocols (accessed 2015 07-01).
  • Health and Safety Executive. Legionnaires’ disease The control of legionella bacteria in water systems. 2013. (accessed 2014 07-07).

—. “Legionnaires’ disease: Technical guidance.”  2013. http://www.hse.gov.uk/pubns/priced/hsg274part3.pdf (accessed 2014 20-10).

—. Managing legionella in hot and cold water systems. http://www.hse.gov.uk/healthservices/legionella.htm (accessed 2015 07-01).

—. “Managing the risks from hot water and surfaces in health and social care.”  2012. http://www.hse.gov.uk/pubns/hsis6.pdf (accessed 2014 20-11).

  •  Health Facilities Scotland. Consultation draft of SHTM 04-01 Water Safety for Healthcare Premises Part G: Operational Procedures and exemplar Written Scheme 2013. Health Facilities Scotland.
  •  Inquisitr. Oregon Water Birth Leaves Baby Disabled, Lawsuit Wants Labor Options Banned. 2015.http://www.inquisitr.com/1761136/oregon-water-birth-leaves-baby-disabled-lawsuits-wants-labor-options-banned/ (accessed 2015 16-01).
  •  Laura Franzin, Carlo Scolfaro, Daniela Cabodi, Mariangela Valera, and Pier Angelo Tovo. Legionella pneumophila Pneumonia in a Newborn after Water Birth: A New Mode of TransmissionOxford Journals, November 2001: 104.
  • Legionella Control. Birthing Pool Death Linked To Legionnaires disease. https://legionellacontrol.com/blog/166-birthing-pool-death-linked-to-legionnaires-disease (accessed 2014 27-11).
  •  Legislation.gov.uk. The Water Supply (Water Fittings) Regulations 1999.The National Archives. 1999. http://www.legislation.gov.uk/uksi/1999/1148/contents/made (accessed 2015 05-01).
  •  M.W. LeChevallier, World Health Organisation. Conditions favouring coliform and HPC bacterial growth in drinkingwater and on water contact surfaces . 2003.
  •  N Phin, T Cresswell, F Parry-Ford on behalf of the Incident Control Team. CASE OF LEGIONNAIRES’ DISEASE IN A NEONATE FOLLOWING A HOME BIRTH IN A HEATED BIRTHING POOL, ENGLAND, JUNE 2014.http://www.eurosurveillance.org. 2014. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20857 (accessed 2015 10-01).
  •  Nottingham University Hospitals. LEGIONELLA MANAGEMENT AND CONTROL PROCEDURES. May 8, 2014.
  • Rosanna A. Zanetti-Daellenbach, Sibil Tschudin, Xiao Yan Zhong, Wolfgang Holzgreve, Olav Lapaire, Irene Ho ̈sli. Maternal and neonatal infections and obstetrical outcome in water birth . Prod. Women’s University Hospital Basel. Spitalstrasse, Basel: European Journal of Obstetrics & Gynecology and Reproductive Biology , 2006 28-August.
  • SMS Environmental – the water experts. Fluid Categories. http://www.sms-environmental.co.uk/fluid_categories.html.
  • Takuhito Nagai, Hisanori Sobajima, and Mitsuji Iwasa. A fatal newborn case of Legionella pneumophila pneumonia occurring after water birth in a bathtub with an all day circulating system, June 1999 – Nagoya City.http://idsc.nih.go.jp/. 2000. http://idsc.nih.go.jp/iasr/21/247/de2474.html (accessed 2014 17-06).
  • Takuhito Nagai, Hisanori Sobajima, Mitsuji Iwasa, Toyonori Tsuzuki, Fumiaki Kura, Junko Amemura-Maekawa, and Haruo Watanabe. Neonatal Sudden Death Due to Legionella Pneumonia Associated with Water Birth in a Domestic Spa Bath. 2002.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154682/ (accessed 2014 3-12).
  • The Guardian. Legionnaires’ disease in baby is linked to heated birthing pool . 2014. http://www.theguardian.com/society/2014/jun/17/legionnaires-disease-heated-birthing-pool-baby-public-health (accessed 2014 18-June).
  • U.S. Department of Health and Human Services Centers for Disease Control and Prevention (CDC) Atlanta, GA 30333. Guidelines for Environmental Infection Control in Health-Care Facilities . 2003.
  • UNITED LINCOLNSHIRE HOSPITALS NHS TRUST. CLEANING, DISINFECTION AND STERILIZATION GUIDELINES FOR RE-USABLE MEDICAL DEVICES. Lincolnshire, 2010 January.
  • Water Regulations Advisory Scheme. Fluid Categories . https://www.wras.co.uk/consumers/resources/glossary/fluid_categories/ (accessed 2014 3-12).
  • which.co.uk. Having a water birth and using birth pools. http://www.which.co.uk/birth-choice/articles/using-water-in-labour.
  • Woolnough, Kevin. Legionella Expert Calls for Greater Vigilance. http://www.eurofins.co.uk/news-archive/legionella-expert-calls-for-greater-vigilance.aspx (accessed 2015 17-01).

Please feel free to distribute and share this document crediting  © K. D. Brainin (Active Birth Pools) 2015

Water Safety Management

When it comes to the creation and care of water birth facilities nothing is more important.

Micro-organisms breed freely in warm moist environments and must be prevented from propagating.

Below a list of guidelines to help you create a safe water birth facility.

 

How to restore your old birth pool to pristine condition

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

http://www.amazon.co.uk/Waterline-Cleaning-removes-lines-cleaner/dp/B006DFD7VK

For information about cleaning and disinfection procedures please click here.

 

 

SaveSave

Setting up a water birth facility

Hospitals in the United Kingdom have been evolving clinical guidelines for the use of water for labour and birth for over 3o years.

The protocols for operational policy that they’ve developed are widely regarded as the benchmark standard internationally.

Below a collection of guidelines and publications to help you create a water birth facility.

Clinical Guidelines – Royal Cornwall Hospital

Clinical Guidelines – Royal Worcester Hospital

Guideline for the Management of Women Requesting Immersion in Water  – Norfolk and Norwich University Hospitals

Operational Policy and Clinical Guidelines – Abbey Birth Centre

Birthspace: An evidence-based guide to birth environment design – Queensland Centre for Mothers and Babies

Use of water for labour and birth – Hywel DDA Local health Board

Guidelines for use of pool during labour and delivery – East Cheshire NHS Trust

Guiding principles for midwifery care during normal labour – Barking, Havering and Redbridge NHS Trust

Waterbirth care during labour for low risk women – Sandwell and West Birmingham Hospitals

Waterbirth Guidelines – Midwifery Led Unit, Wirral Hospital

Choosing a Water Birth – East and North Hertfordshire

Birthing pool use of labour and delivery – Wansbeck General Hospital

Water birth and use of water in labour guideline – Buckinghamshire Healthcare

Water for labour and birth guideline – Northern health and Social Care Trust

Immersion in water during labour and birth – NHS Forth Valley

Intrapartum care midwifery led unit – Wirral Women & Children’s Hospital

Guidelines for water birth within the hospital and at home – Dartford & Gravesham NHS

Disinfection and Sterilisation policy (infection control) – Basingstoke and North Hampshire NHS FT

United Kingdom Department of Health: Safe water in healthcare premises

Guidance on design, installation, commissioning, testing, monitoring and operation of water supply systems in healthcare premises.

This Health Technical Memorandum (HTM 04-01) has now been revised into 3 parts, A, B and C.

It gives advice and guidance on the legal requirements, design applications, maintenance and operation of hot and cold water supply, storage and distribution systems in all types of healthcare premises to:

  • healthcare management
  • Water Safety Groups
  • design engineers
  • estate managers
  • operations managers
  • contractors
  • the supply chain

It also provides advice and guidance on the control and management of the risk posed by Legionella, Pseudomonas aeruginosa and other water borne pathogens within a healthcare setting.

Part A: covers the design, installation and commissioning

Part B:  covers operational management

Part C:  focuses on specific additional measures that should be taken to control and minimise the risk of Pseudomonas aeruginosa in augmented care units

It should be read in conjunction with the HSE’s Approved Code of Practice (L8) and HSG274 Part 2.

It is equally applicable to both new and existing sites.

Part A: design, installation and commissioning

Part B: operational management

Part C: Pseudomonas aeruginosa – advice for augmented care units

Supplement: performance specification D 08 – thermostatic mixing valves

 

Labour and birth guidelines – West Middlesex University Hospital

February 2015:

By Chantelle Winstanley (Consultant Midwife)

Submitted by Alyson Brown
Natural Birth Centre Lead Midwife
Queen Mary Maternity Unit
West Middlesex University Hospital

Contents

Benefits and rationale for use
Criteria for use
Special circumstances
Care during first stage of labour
Care during second stage
Care during third stage
Emergency procedures in the pool
Cleaning the pool

Related Guidelines

Midwifery-led care
Labour
Prelabour SROM
Group B streptococcus
Fetal monitoring in labour

Ratified by Maternity Services Forum – November 2013

Changes since last update – Infectious Diseases p4

Review Date – November 2016

Labour and Birth in Water

When utilising this guideline to support women who may wish to use water for labour and / or birth, a full discussion must take place between the women and her caregiver to ensure the benefits and potential challenges concerning the use of water have been highlighted.

Where possible, informed decision making should allow for a distinction to be made between ‘Hydrotherapy,’ that is, the use of immersion in the water to ease the discomfort of labour and ‘Waterbirth;’ the term used to indicate that the baby has been born directly into warm water.

Following discussion during the antenatal period or upon admission in labour, it is good clinical practice to document a woman’s preferred option in relation to hydrotherapy for labour and waterbirth. Midwives can refer to pages 14-16 of ‘Birth and Beyond’ leaflet (2012)’ to aid a discussion.

BENEFITS AND RATIONALE FOR USE

Evidence which supports a positive experience for women who choose to labour and / or birth in the water is well documented.

Maternal satisfaction is increased by feeling more relaxed in the water, feeling more in control and more involved in decision-making (Richmond 2003; Hall and Holloway, 1998.)

Hydrotherapy may offer benefits to women owing to feelings of weightlessness, ease of mobility due to water buoyancy, warmth, deep relaxation and the principle of facilitating and accentuating normal childbirth (Odent, 1998; Garland, 2011.) Odent (1998) suggests that the deep relaxation obtained from warm water promotes rapid cervical dilation.

In addition, there is robust evidence to prove that water is a useful analgesic in labour, resulting in less use of epidural and spinal anaesthesia following immersion in the water (Cluett and Burns, 2009.)

There is some evidence to suggest that women who choose a waterbirth sustain reduced perineal trauma, owing to the counter-pressure of the water encouraging steady maternal pushing and a slow delivery of the baby’s head (Garland, 2011.)

A joint statement by the RCOG / RCM, published in 2006, supports the principle of hydrotherapy for healthy women with uncomplicated pregnancies (RCOG / RCM, 2006.) Whilst they state that the evidence for birthing in water is less clear, Cluett and Burns (2009) found that, in comparison to land births, there was no significant difference in the type of birth, Apgar scores (at 5 minutes), admission to NNU and neonatal infection.

Likewise, there is no evidence to support the notion that the use of water in labour and birth increases perinatal morbidity and mortality (Alderice et al 1995; Gilbert and Tookey, 1999.)

CRITERIA FOR THE USE OF WATER IN LABOUR AND BIRTH: HOSPITAL AND HOME SETTING

  • Uncomplicated singleton pregnancy; long lie and cephalic presentation
  • 37 – 42 weeks gestation
  • Spontaneous onset of labour; regular, painful contractions
  • Normal fetal heart rate
  • Maternal observations remain within normal limits
  • Absence of bleeding greater than a blood-stained show
  • Absence of meconium
  • Ruptured membranes for <48 hours* (see Prelabour spontaneous rupture of membranes and Group B streptococcus).*Women with ruptured membranes >24 hours, in an otherwise uncomplicated pregnancy at 37-42 weeks, who make an informed decision for expectant management of labour should not be excluded from hydrotherapy / waterbirth providing that SROM is within 48 hours of the onset of established labour.The liquor should be clear, with no signs of infection or odour with an absence of meconium, known GBS or maternal pyrexia. Vigilant maternal and fetal observation is paramount in these circumstances. Should any concerns arise, the midwife should encourage the woman to leave the water immediately. Following birth, the newborn should be closely observed for a minimum of 12 hours in cases of ruptured membranes >24 hours.
  • Absence of narcotic analgesia: It is not advisable for women who have received opiate analgesics to enter the pool. Women should be clear of sedation symptoms before using water in labour– a recommended time frame is 2-4 hours following the administration of either pethidine or Meptid; midwives should make an assessment of sedation levels before the woman enters the pool.
  • Women with known GBS in current pregnancy: Women with known GBS are not excluded from the use of water, providing intrapartum antibiotics have been offered in established labour. Care should be taken to ensure that infection control principles are adhered to i.e waterproof dressing is applied to the cannula.Women with known GBS and pre-labour ruptured of the membranes (PROM) will be offered immediate IOL (therefore excluded from the use of water.) If women decline IOL and choose expectant management <24 hours there is no current evidence available to suggest that water in labour increase the risk of neonatal / maternal infection in these cases. A full discussion should take place with the woman regarding the risks of GBS / PROM, including liaison with the Obstetric and Paediatric teams.

Special Circumstances: women who fall outside of the criteria for the use of water in labour and birth:

  • A woman should be given the opportunity to discuss her requests with the Consultant Midwife and/or Consultant Obstetrician in the antenatal period. SoMs are also available to support discussions on maternal choice.
  • Women who request a waterbirth but fall outside of the criteria should have a clear plan made and documented based on informed choice, preferably before labour commences. If the plan changes during labour, and midwives are uncertain if the use of water is an appropriate option, they should contact the Supervisor of Midwives (SoM) on call or discuss with the labour ward co-ordinator on duty.
  • All discussions should be thoroughly documented concerning the benefits and risks of using the pool where risk factors are present.
  • Clinical staff should respect that women have a right and choice to opt for a water birth when high risk factors are present.
  • For higher-risk cases where continuous electronic fetal monitoring (cEFM) is recommended, the use of telemetry should be encouraged and Room 6 on labour ward should be prioritised (where possible) to reflect a woman’s request.

Infectious Diseases and Waterbirth

There is no evidence on the safety of water for women with known viral infections. Trust infectious diseases consultants have advised that any woman with HIV and a plan for a vaginal birth will have an undetectable viral load and therefore may use the pool.

Women who are chronic carriers of hepatitis B i.e. ‘e’ antigen negative may also use the pool but those with hepatitis C who are PCR positive i.e. detectable viraemia should not. There will be evidence of discussion and a plan in the notes of women with viral infections.

PREPARING FOR A WATERBIRTH AT HOME

  • Prepare a resuscitation area for the baby – ensure a flat surface; check equipment and have x2 cord clamps prepared in the rare event of cord snapping
  • Prepare an area for the mother to get out of the pool safely in the event of an emergency
  • Ensure that the partner understands they are responsible for filling / empting the pool. Record the temperature as in a hospital pool birth
  • Ensure that there is sufficient mobile phone signal to call 999 in the event of an emergency

MIDWIFERY CONSIDERATIONS

  • Midwives are responsible for their own professional development; only midwives competent in the principles of waterbirth are to care for women requesting hydrotherapy in labour. Support and training is available in the use of water for labour and birth (RCOG / RCM 2006); midwives should speak to the Consultant Midwife or Practice Development team should they require training in this area.
  • When caring for a woman using a birthing pool, back care is important. Minimise bending where appropriate.
  • If possible, encourage the woman to lift her abdomen out of the water to enable fetal heart auscultation.
  • Use gauntlet gloves in the second stage; avoid becoming excessively wet

CARE DURING FIRST STAGE OF LABOUR

  • There is little evidence available for the use of arbitrary points during labour to dictate when pools should or should not be used (RCM, 2012.) Women are recommended to enter the pool when contractions are strong, regular and painful.
  • Prepare a safe place to exit the pool, if required, in the event of an emergency.
  • Check neonatal resuscitation equipment.
  • Comfortable room temperature (21-28o C)
  • Record the water temperature and maternal temperature hourly. RCOG/RCM (2006) suggests that it may be of more benefit to allow women to regulate the pool temperature to their own comfort in the first stage of labour. As a guide, the water temperature can be maintained below <37.5 o C (Gordon, 1996; Garland; 2011)
  • Maternal observations (temp / pulse) and progress should be recorded hourly (with the exception of maternal BP)
  • The fetal heart should be auscultated with an underwater sonicaid and recorded as for intermittent auscultation on land (see Fetal monitoring in labour)
    • Water should be deep enough to facilitate movement and comfort, but not so deep that there is a risk of the cord snapping when the baby is brought to the surface. Therefore water should be at the level of the woman’s nipples.
    • Aromatherapy oils should not be used in the water.
    • Whilst in the pool, the woman may use Entonox for pain relief.
    • Exiting and re-entering the pool should be determined by the woman as she wishes (RCOG/RCM, 2006.) As a guide, encourage the woman to exit the pool every 2 hours to empty her bladder.
    • One midwife, trained and competent in water births, to remain with the woman throughout labour.
    • Allow the woman to adopt any position she finds comfortable.
    • Encourage adequate hydration throughout
    • If delivery is not imminent within 4 hours of entering the pool, the woman should leave the pool for a period of time. She may then re-enter the pool providing her contractions regain regularity and fetal heart patterns are normal.

CARE DURING SECOND STAGE

  • Regulation of water temperature is important in the second stage of labour – maintain water temperature at around 37.0 o C to prevent fetal initiation of respiration under water (Johnson, 1996)
  • It is a recommendation that 2 midwives be present when birth appears imminent
  • Prepare birth equipment. X2 cord clamps are recommended.
  • Careful intermittent auscultation of the fetal heart every 5 minutes for 60 seconds following a contraction.
  • The instinctive, expulsive contractions observed in the second stage may be quite different from that which midwives observe on a bed-based or land birth. Directed pushing is not normally required when a woman is submerged in the water; she will often make instinctive responses to the descending fetal head and control the speed with short pushes.
  • It is important the baby is born totally immersed in the water at the point of birth. During crowning, some women have an uncontrollable urge to lift their bottom up out of the water; this presents a risk to the infant. In this circumstance, the midwife should gently encourage the woman to re-immerse in the water by placing her hand on the woman’s lower back or thigh to guide her.
  • Birth in water is often gentle and relaxed. The infant may take up to a minute to respond. If no sign of breathing is apparent after one minute, clamp and cut the cord, call for emergency assistance, wrap the infant in a clean, dry towel and place on a flat surface and initiate neonatal resuscitation if required.A “hands off” approach is strictly necessary to avoid stimulating the baby and causing initiation of respiration under water. Feeling for the nuchal cord or exerting manual counter pressure on the emerging head is against recommendation and is potentially harmful. DO NOT attempt to clamp and cut a tight cord under water.
  • A mirror may be used to aid visualisation and assess progress of the second stage.
  • As far as possible, faecal contamination in the pool should be removed using a sieve. In the event the pool becomes heavily contaminated, it may be necessary to ask the woman to temporarily leave the pool whilst it is emptied, cleaned and re-filled.
  • Following delivery of head and shoulders, the midwife and / or woman should gently bring the baby head first to the surface. The air will stimulate respiration (Gordon, 1996; Johnson, 1996).
  • The baby’s body should be kept under water to prevent hypothermia.
  • Birth in water is often gentle and relaxed. The infant may take up to a minute to respond. If no sign of breathing is apparent after one minute, clamp and cut the cord, call for emergency assistance, wrap the infant in a clean, dry towel and place on a flat surface and initiate neonatal resuscitation if required.

Slow Progress in the second stage

If progress is slow or not apparent, consider:

  • Maternal and fetal condition and maternal behaviour – all observations within normal limits?
  • Changing maternal position for pushing, possibly leaving the pool
  • Encouragement – use of a mirror to view progress?
  • Emptying the bladder
  • Is the woman adequately hydrated?

Birth would be expected to take place within 3 hours following full dilatation for nullips and 2 hours for multips as for a dry birth.

The woman must leave the pool if there is a deviation from normal.

CARE DURING THIRD STAGE

Physiological third stage

Women who have experienced an uncomplicated first and second stage of labour should be able to choose a physiological third stage following full discussion.

It should be left to maternal choice whether the woman exits the pool for delivery of the placenta (physiological third stage only); the risk of water embolism is entirely theoretical and there are no known cases (Wickham, 2005.)

Midwives should be aware that it is difficult to identify if a woman is having a PPH in the pool.

  • Determine the woman’s choice and ensure all is normal
  • Do not clamp and cut the cord; doing so disturbs normal physiology and may predispose to a retained placenta or PPH.
  • Keep the infant immersed in the warm water at approximately the same level as the uterus to prevent possible excessive transfusion to the baby.
  • Allow the woman to expulse the placenta sitting upright in the water: ensure the water is maintained at 37 o
  • If there is any delay or signs of excessive bleeding, assist the woman to leave the pool immediately. Initiate active management in this case.
  • If the woman wishes to leave the pool for physiological third stage, clamp and cut the cord following cessation of pulsation, pass the baby to a birth partner and assist the woman out of the pool. Keep mother and baby warm with dry towels and encourage skin-to-skin and early suckling. An upright position is recommended. Remove the clamp from the placental end of the cord and allow the blood to drain into a receiver to facilitate separation and expulsion of the placenta.
  • The placenta should be delivered by maternal effort alone.
  • The placenta should deliver spontaneously within an hour following the birth.
  • Blood loss cannot be estimated in the pool. Clots may be collected in a sieve and weighed. The midwife must make a clinical decision about the blood loss – as a general rule, if it is impossible to see the bottom of the pool due to the colour of the water, excessive blood loss may have occurred.

EBL SHOULD BE RECORDED AS MORE OR LESS THAN 500MLS.

  • Placental check as per a land birth

Active management of the third stage

The woman should be asked to leave the pool prior to the administration of an oxytocic drug and delivery of the placenta. DO NOT attempt CCT in the water.

  • Assist the woman to leave the pool
  • 1 ampoule (10 i.u) of Syntocinon to be given IM with consent.
  • Keep mother and baby warm; lie in a suitable, safe place to facilitate delivery of the placenta.
  • Observe signs of placental separation. Apply controlled cord traction whilst guarding the uterus
  • Active management should be complete within 15-30 minutes post birth. Contact a senior doctor if the placenta has not been delivered at this point.
  • Placental check and EBL as per a land birth

Care following the birth

  • Examination of the perineum should take place out of the pool.
  • Excepting cases of profuse bleeding, suturing of perineal tears should be delayed for at least one hour following the birth to allow for water retention of the perineal tissues to dissipate.

EMERGENCIES IN THE WATER

Most emergency situations can be managed with the woman still in the pool.

Very rarely do low-risk women have to be helped from the pool in an emergency.

In all cases of emergencies in the water, prompt recognition of a deviation from the norm is paramount: summon rapid assistance on 2222 or 999 assistance in a home setting.

  1. Shoulder dystocia
  • If the fetal head fails to restitute and the body is not expelled within the next strong contraction with maternal effort, stand the mother up out of the water immediately.
  • Raise one leg up on the step of the pool (or the side of the pool if the woman is able to) If shoulders do not come with the next contraction help her promptly from the bath, lay her on a mat on the floor, summon emergency assistance 2222 immediately and start the emergency drill for shoulder dystocia.
  1. Baby requiring resuscitation
  • Clamp and cut the cord immediately and remove from the water. Call for neonatal assistance on 2222 and commence newborn life support (NLS) drill
  • If in a home setting, summon 999 assistance and utilise NLS equipment.
  1. Post partum haemorrhage (if EBL estimated >500mls)
  • Clamp and cut the cord if the placenta is still in-situ.
  • Give Syntometrine 1 ml and assist the women from the pool immediately.
  • Active management of 3rd stage
  • Summon assistance on 2222; utilise PPH trolley
  • Call 999 if in a home setting
  • Assess for transfer to Labour Ward or theatre for continuing management of postpartum haemorrhage
  • Follow drill for major obstetric haemorrhage
  1. Snapped Cord
  • Very occasionally, it has been noted that the cord may snap as the baby emerges
  • Quickly clamp and cut the cord at both ends to ensure minimal blood loss
  • Observe the infant closely for signs of distress
  • Notify a paediatrician
  • Commence NLS if required
  1. Emergency evacuation of pool in NBC or LW

Equipment required:

SLING NET

Number of handlers required:

MINUMUM 5

  • Lead midwife to call for emergency assistance on 2222 immediately.

CLEANING THE POOL

Stringent infection control principles should be adhered to at all times.

  • Before removing the plug, remove as much debris as possible using the sieve.
  • Open the plug to remove contaminated water.
  • Rinse the pool using the shower attachment.
  • Mix 1 litre of Chlorclean solution using strength of 1 tablet of Chlorclean to 1 litre of water
  • Using a disposable cloth and gloves use the solution to clean the pool, and the surfaces and steps around the pool.
  • Rinse with cold water to remove the Chlorclean solution.
  • Dry the pool.
  • The plug should be closed when the pool is not in use.
  • There should be no moisture at the bottom of the pool when not in use; it must be left dry to prevent bacteria forming.

Cleaning and disinfecting of equipment:

  • Using hot, soapy water, wash the pool thermometer, mirror and any other re-usable equipment that has been used in the pool.
  • Soak the equipment in the pool bucket provided for at least 30 minutes in a solution made of 1 Chlorclean tablets to 1 litres of water.
  • Rinse and dry the equipment.

REFERENCES AND BIBLIOGRAPHY

  • Alderice, F, Renfrew, M and Marchant, S (1995) Labour and birth in water in England and Wales. British Medical Journal. Vol 310; pp837
  • Belbin, A. 1996 Power and choice in birthgiving: a case study British Journal of Midwifery Vol 4 No 5 pp264-267
  • Brown, L. 1998 The tide has turned: an audit of waterbirth. British Journal of Midwifery
  • Charles, C. (1998) Fetal hypothermia risk from warm water immersion. British Journal of Midwifery Vol 6 No3 pp 152-156
  • Cluett, ER and Burns, E (2009) Immersion in water in labour and birth. Cochrane database of systematic reviews. Issue 2. J Wiley and Sons: Chichester.
  • Forde, C et al 1999 Labour and delivery in the birthing pool. British Journal of Midwifery Vol 7 No 3 pp165-171
  • Gilbert, RE and Tookey, PA (1999) Perinatal mortality and morbidity among babies delivered in water; surveillance study and post survey. British Medical Journal. Vol 319 (7208) ; pp 183-187
  • Gordon, Y. 1996 Waterbirth: the safety issues in 1996 Waterbirth unplugged Books for Midwives Press pp135-142
  • Hall, SM and Holloway, IM (1998) Staying in control; women’s experience of labour in water. Midwifery. Vol 14 (1) pp 30-6
  • Johnson, P. 1996 Birth under water: to breathe or not to breathe. British Journal of Obstetrics and Gynaecology
  • McLean, M.T. 2000 Lingering concerns about waterbirth. Midwifery Today Vol 1 N0 54 p 7
  • Mills, M. S. and Stirrat, G. M. 1996 Water immersion and waterbirth. Current Obstetrics and Gynaecology
  • Odent, M. 1998 Use of water during labour: updated recommendations. MIDIRS Vol 8 No 1 pp68-69
  • Richmond, H (2003) Women’s experience of waterbirth. Practising Midwife Vol 6; pp 26-31
  • Royal College of Midwives (2012) Evidence Based Guidelines for Midwifery-led care in labour. RCM: London
  • Royal Collage of Obstetrics and Gynaecology / the Royal College of Midwives (2006) Joint statement no. 1; Immersion in water during labour and birth. RCOG: London
  • Wickham, S (2005) The birth of water embolism. The Practising Midwife. Vol 8(11) pp37

PROCESS FOR MONITORING

Guideline elements to be monitored:

 

  • Documentation of discussion of benefits and possible risks of hydrotherapy / waterbirth with woman either antenatally or on admission in labour
  • Documentated plan for monitoring of fetal / maternal well-being and water temperature throughout labour
  • Documentation and completion of proformas (if applicable) following an obstetric / paediatric emergency in the pool.
Process for monitoring
  •  Retrospective case notes audit
Group responsible for monitoring, review and development of action plan
  • Maternity Improvement Committee
Group responsible for monitoring of action plan and implementation
  • Maternity Services Forum

 

APPENDIX 1

PROCEDURE FOR EMERGENCY POOL EVACUATION IN THE EVENT OF
MATERNAL COLLAPSE

1. Call for emergency help

2. Support the mother’s head above water

3. DO NOT empty the pool – water helps to float the woman out of the pool

4. Locate the sling net from the adjoining sluice room

5. Prepare a bed / trolley at pool height to receive the woman – remove the head of the bed if necessary and switch off electric supply

6. Prepare towels to receive the woman to keep warm and maintain temperature

7. Minimum 5 members of staff required

8. Work as a team. Float the sling under the woman covering the full length of body, arms inside the sling

10. Work as a team.
X1 staff at the woman’s head
X2 staff on either side of the net, feet supported

11. Work as a team.
12. On the count of 3, transfer from pool to bed using the sling net, with full support

13. Start CPR if required

The use of water for labour and birth – Colchester University Hospital

Feeling relaxed, secure and in control and being able to move about freely can make
it more likely for you to have a quicker and more natural birth.

For some women using a birthing pool can offer all of these benefits.

Today more and more women are considering using water for pain relief in labour.

A midwife can support you in using a birthing pool at home or in our midwife-led units
at Colchester General Hospital and Clacton and Harwich hospitals in the community.

Using a birthing pool is likely to increase the chances of a normal vaginal delivery
and therefore we would like to offer this option to as many women as possible.

We have compiled this leaflet to give you and your partner relevant information about
labouring and giving birth in water.

Please talk to your midwife during the antenatal period who will be able to answer any questions you may have.

Please click here to read the full document

 

The use of water in labour and birth – NZ College of Midwives

The New Zealand College of Midwives (Inc) supports immersion of women in warm water during labour as a method of pain management.

There is no evidence that remaining in water for the birth of the baby leads to adverse outcomes for the mother or baby where the labour has been within normal parameters.

Definition:

Water birth means where a baby is born fully submerged into water.

Rationale:

• Evidence supports immersion in warm water as an effective form of pain relief that reduces the use of narcotics.

• There is no evidence to suggest that immersion in water during labour or birth in water leads to any detrimental effects for either the mother or her baby.

• Evidence that immersion in water during labour reduces the length of active labour is inconclusive.

• Evidence that birth in water reduces perineal trauma or blood loss is inconclusive.

Guidelines:

Midwives offering water immersion for labour and for birth are responsible for ensuring the information given to women is accurate and up to date.

The following guidelines are recommended:

• There are no adverse factors noted in foetal or maternal wellbeing during labour.

• Baseline assessments of both maternal and baby wellbeing should be done prior to entering the bath/pool and assessments continued throughout the time in water as for any normal labour.

• Vaginal examinations can be performed with the woman in water.

• Pethidine should not be given to women labouring in water.

• The water temperature should be kept as cool as the woman finds comfortable during the first stage of labour (around 35oC) and increased to no more than 37oC for the baby’s birth.

• If maternal temperature rises more than 1oC above the baseline temperature then the water should be cooled or the woman encouraged to leave the bath/pool. Women need to be aware of this in advance.

• Water temperature should be recorded as the woman enters the bath/pool and regularly during the time she remains in the pool.

• Careful documentation should be kept of maternal and water temperatures, FHR and the approximate surface area of the woman’s body submerged.

• The cord should not be clamped and cut until after the birth of the baby’s body.

• The baby should be brought to the surface immediately, with the head facing down to assist the drainage of water from the baby’s mouth and nose.

• The baby’s body can remain in the water to maintain warmth, unless the baby’s condition dictates otherwise. (Note: babies born in water may take slightly longer to establish respirations than those born into air. Maintain close observation of colour, heart rate and respirations.)

• Third stage should be managed physiologically as for any other low risk birth. If oxytocin is required or third stage is prolonged the woman is assisted to leave the bath/pool.

• Midwives must ensure that baths and pipes are thoroughly cleaned after use.

References:

Title: Labour and delivery in the birthing pool
Author: Forde, C, Creighton, S, Batty, A, Howden, J, Summers-Ma, S, and Ridgeway, G

Title: Warm tub bathing during labour: maternal and neonatal effects
Authors: Ohlsson, G, Buchave, P, Leandersson, U, Nordstrom, L, Rydhstrom, H, and Sjolin, I
Source: Acta Obstetricia et Gynecologica Scandinavica, Vol 80, pp 311 – 314, 2001

Title: Immersion in water in the first stage of labour: a randomised controlled trial
Authors: Eckert, K, Turnbull, D, and MacLennan, A
Source: Birth, Volume 28, No 2, pp 84–93, June 2001

Title: Immersion in water during first stage of labour
Author: Homer, C
Source: Letter to the editor, Birth, Vol. 29, No 1, March, 2002

Title: Waterbirths: a comparative study. A prospective study on more than 2000 waterbirths Authors: Geissbuhler, V and Eberhard, J
Source: Foetal Diagnosis Therapy, Vol. 15, pp. 291 – 300, 2000
Title: Immersion in water in pregnancy, labour and birth Author: Nikodem, VC
Source: Cochrane Database Systematic Review, 2000

Title: Perinatal mortality and morbidity among babies delivered in water: surveillance study and postal survey
Authors: Gilbert, R and Tookey, P
Source: British Medical Journal, 319 (7208), pp. 483 – 487, 1999

Title: Birth under water – to breathe or not to breath
Author: Johnson, P
Source: British Journal of Obstetrics and Gynaecology, 103, 202-208, 1996

Title: Labour and birth in water: temperature of pool is important
Authors: Deans, AC and Steer, PJ
Source: British Medical Journal. 311:390-391, 1995

Title: Waterbirth – An attitude to care
Author: Garland, D
Source: Books for Midwives, 1995. Chesire

Title: Foetal hypothermia risk from warm water immersion
Author: Charles, C
Source: British Journal of Midwifery

The purpose of New Zealand College of Midwives Consensus Statements is to provide women, midwives and the maternity services with the profession’s position on any given situation.

The guidelines are designed to educate and support best practice.

All position statements are regularly reviewed and updated in line with evidence-based practice.

Watford General Hospital: Cleaning & disinfecting water birth pool and surrounding area

Watford General Hospital

Before use

The pool needs to be cleaned every 24 hours, as per instructions below. On completion The Pool Cleaning Record is signed by the member of staff performing the procedure.

Prior to each use and every 24 hours (to coincide with the daily pool cleaning), the pool taps need to be run for 2 minutes, as per water flushing guidelines.

After Use

1. Use the standard infection control precautions (plastic apron, disposable gloves and eye protection) when cleaning the pool. Ensure the area is well ventilated.

2. Remove any debris from the pool, using the sieve, before emptying the pool (to prevent debris blocking the pool outlet). Please ensure the thermometer has been removed from the pool prior to empyting the pool, in order not to block the pool outlet.

3. Use a non-abrasive detergeant to clean the pool of any further debris and blood; ensure the tap is cleaned first, so as not to transfer micro-organisms from the “dirty” pool area to the cleaner tap region. Please see guidance on cleaning sinks/basins and taps below. Rinse well with warm water.

4. Ensure the pool tap outlet is turned to “closed” prior to cleaning the pool tap and pool area with the chlorclean solution (2 tablets in 2 litres of cold water).

5. Clean the pool tap first prior to cleaning the pool with the chlorclean solution, as above.

6. When cleaning the pool itself, pour the chlorclean solution around the side of the pool. Using a clean disposable mop head/cloth, clean the surfaces of the pool and leave the solution in the pool for 10 minutes. Discard this mop head.

7. Open the tap outlet and empty the pool of the chlorclean solution.

8. Using cold water, rinse the tap then the pool to remove all traces of the chlorclean solution, to prevent any residue being left on the pool surface.

9. Dry the entire surface of the pool using a clean cloth or fresh disposable mop head. the pool is dried ensure the mop bucket asigned for cleaning the pool is cleaned and dried throroughly. Store it with the mop handle in room 8. Ensure all disposable mop heads used are disposed of in a yellow clinical waste bag.

11. Ensure the outside of the pool, window ledges, sink and its tap are cleaned with a chlorclean solution.

12. To clean the equipment (sieve, pool thermometer, mirror) used: wash and rinse these in warm water. Then soak for a minimum of 30 minutes in a chlorclean solution (2 chlorclean tablets in 2 litres of cold water), to cover equipment. After this, rinse and dry the equipment before placing these on a clean inco sheet on the top of the delivery box.

13. Finally, after the pool room has been restocked of equipment, towels, draw sheets etc, the floor is mopped using a chlorclean solution and a separate mop/bucket supplied by Medirest.

Guidance on cleaning of sinks/basins and taps in West Hertfordshire Hospitals NHS Trust
(to minimise risk of Pseudomonas aeruginosa)

Step 1 – cleaning the surrounding area

All basins, sinks and surrounding areas should e free from clutter and debris:

• Put on disposable gloves and apron
• Using a new disposable cloth and detergeant damp-clean the paper towel holder, then the soap dispenser, paying particular attention to theunderside of the soap dispensing unit, finishing with the nozzle.
• Then clean the underside of the sink/basin working from the higher level downwards.
• Carefully dispose of the cloth into the appropriate waste bag.
• Dry all surfaces with disposable cloth/towel as above.

Step 2 – Cleaning the wash-hand basin

• Using a new disposable cloth and sanitiser clean tap(s) first – start at the tap outlet end (do not put the cloth into the tap outlet), finish at the base and then clean tap handles.
• Then clean around the inside of the sink/basin from top rim of bowl, then overflow and waste outlet (do not put cloth into the overflow or waste outlet)
• Rinse as above
• Carefully dispose of cloth in appropriate waste bag.
• Dry all surfaces with disposable cloth/towel as above
• Dispose of gloves and apron in appropriate waste bag and decontaminate hands between the cleaning of each sink.

Guidelines for a safe water birth

Barbara Harper 2006

The aim of this guideline is to provide a review of information on labor and birth in water and to suggest possible strategies to minimize the potential hazards to mothers and infants.

It can also be used to promote the maternal and infant benefits, which may arise from choosing this type of birth experience, but are not easily quantifiable.

It is written with the belief that clinically sound, evidence based guidelines improve quality of care.

These recommendations are not intended to dictate an exclusive course of management or treatment.

They must be evaluated with reference to individual client’s needs, resources and limitations unique to the place of birth and variations in client choices.

Rationale

The therapeutic properties of warm water immersion have been known for centuries. Baths, showers and whirlpools have been used for comfort during labor for many years. Over the past two decades the use of warm water immersion for the birth of the baby has aroused interest in many countries and an increase in the number of women requesting this option for both hospital and out-of-hospital births is occurring.

Waterbirth International has reviewed the best available evidence and offers this guideline to assist midwives and women in their decision making process around the use of water immersion for labor and birth. The body of evidence is small but growing.

Evidence

Maternal and neonatal outcomes after water immersion for labor and birth have been assessed in two large surveys over a four year period in England and Wales (Alderdice, Renfrew & Marchant, 1995; Gilbert & Tookey, 1999) Researchers reviewed 4693 and 4032 births, respectively, where water immersion was used and found no difference in outcomes for women and their newborns compared to a cohort group of low risk women who did not use water.

The perinatal mortality rate for these births was comparable to other low risk births in the UK. (Gilbert and Tookey 1999). This study tried to estimate mortality and morbidity rates for babies delivered in water.

The data collected was compared to other sources of data providing similar estimates for babies delivered conventionally to low-risk women. They examined adverse outcomes, which were reported over a two-year period between 1994 and 1996 from approximately 4,000 births in water. 1500 consultant pediatricians were surveyed and asked to report any cases of baby deaths associated with waterbirth. None of the five perinatal deaths recorded among the waterbirths was attributable to delivery in water.

Admissions to special care baby units were slightly lower for the water-born babies than admissions for other low-risk babies. This was a landmark study in providing significant reassurance about the safety of waterbirth.

Other researchers (Burns 2001; Lenstrup et al, 1987; Rush et al,1996; & Waldenstrom et al, 1992) have made similar outcome reports. A recent Canadian randomized control trial reported women experienced less pain after water immersion than their non-immersion counterparts and over 80% of the water immersion group said they would use the tub in subsequent labors (Rush et al, 1996).

There have been a few highly controversial reports in the literature, especially in the journal Pediatrics on the negative effects of water immersion for babies. “Water Birth: a near drowning experience (Nuygen et al, 2002) suggests that every case of waterbirth should be evaluated as a possible fresh water drowning. The authors’ conclusions that the use of water for labor and birth may contribute to adverse outcomes should be viewed with considerable caution.

There are several methodological problems with this case study and these results are not congruent with the findings of many large trials. It is clear more research is needed into this form of care. But opinion pieces should be viewed at just that, opinion and not referred to as scientific or medical evaluation of the evidence.

In the absence of a substantial body of evidence on the use of warm water immersion for labor and birth, the potential advantages and disadvantages, which follow, are primarily derived from experience. This guideline will be updated as more evidence becomes available.

Eligibility

Water immersion for labor and birth should be available to all clients who request it, who have been screened and who have discussed the risks and benefits with their care provider. Some practices may choose to use a standard informed consent form for the use of warm water immersion.

Water Immersion Defined

Water immersion must be defined at providing a depth of water which enables the mother to sit in water that covers her belly completely and comes up to her breast level or kneel in water on her haunches which comes up to just below her breast level.

Any amount of water less than this does not constitute true immersion and will not create the buoyancy effect and produce the chemical and hormonal changes which enhance a more rapid labor. After an initial immersion of approximately thirty minutes the body responds by releasing more oxytocin, but only if the body experiences deep immersion, leading to buoyancy.

When to enter the bath in labor

It has been reported in the literature that labor slows down or stops if the woman enters the bath too soon. Guidelines were established to prevent a woman from entering the bath before the start of active labor, by definition: established labor pattern, dilation of the cervix to 4cm or greater and the need to concentrate during the contraction.

We argue that observation has led us to believe that a woman should be given the opportunity to use immersion as soon as her body and her brain have the desire to bathe. Women have been observed in very early labor relaxing, letting go of fear and progressing quickly to an active and pushing phase of their labor.

Using the water effectively often requires a “trial of water,” to see how the mother will respond. It has been noted with the advent of underwater continuous fetal monitoring that contraction patterns once thought to space out and become less frequent were in fact exactly the same in or out of the water. The mother’s response to those contractions in the water was vastly different from the response on the bed, thus making everyone believe that they were less intense.

The chemical and hormonal effects of immersion take effect after no less than twenty minutes and peak around ninety minutes. It is therefore suggested that a change of environment, such as getting out and walking be recommended after about two hours of initial immersion. The midwife can make an evaluation of the mother’s condition at that time.

Getting back in the water after thirty minutes will reactivate the chemical and hormonal process, including an sudden and often marked increase in oxytocin.
Dianne Garland, registered midwife, lead waterbirth researcher in England and the author of, ” Waterbirth: An Attitude to Care,” says the following:
” Just as labors can be slower or stop out of water so is true of water. Changes to the woman’s body are normal in labor and each of us will tolerate different lengths of first and second stage. Just as we all deal with different amounts of fatigue and stress, so each woman is individual and should be treated as such in labor.

The point of this with water labor and waterbirth is that as each woman is an individual, so her labor should be cared for, within the normal parameters set by ourselves as autonomous practitioners. Or within the maternity units where we work. Fundamental changes to normal practice may need to be made in units where active management of labor prevails.”

Summary of benefits for labor and birth in water

  • Facilitates mobility and enables the mother to assume any position which is comfortable for labor and pushing
  • Speeds up labor
  • Reduces blood pressure
  • Gives mother more feelings of control
  • Provides significant pain relief
  • Promotes relaxation
  • Conserves her energy
  • Reduces the need for drugs and interventions
  • Protects the mother from interventions by giving her a protected private space
  • Reduces perineal tearing
  • Reduces cesarean section rates
  • Is highly rated by mothers – typically stating they would consider giving birth in water again
  • Is highly rated by midwives
  • Encourages an easier birth for mother and a gentler welcome for baby

Theoretical Potential Disadvantages

  • Decrease in uterine contraction strength and frequency, especially if entering the bath too soon
  • Neonatal water aspiration
  • Maternal hyperthermia may contribute to fetal hypoxemia
  • Neonatal hypothermia
  • Cord immersion in warm water may delay vasoconstriction, increasing red cell transfusion to the newborn and promoting jaundice
  • Blood loss estimation and assessment not accurate
  • Maternal and Neonatal infection may be increase – not supported by the evidence
  • Risk of acquiring blood born infection or sustaining back injury for caregivers

    Recommended Criteria for the use of a water pool

  • An uncomplicated pregnancy of at least 37 weeks gestation
  • Established labor pattern – good regular contractions
  • Reassuring fetal heart tones
  • Absence of bleeding greater than bloody show
  • Spontaneous or on-going labor after misoprostol or Pitocin

    Contraindications for birth in a water pool

    There are no contraindications to labor in water, as evaluated by the literature and from experience. Immersion is a client/provider decision. Birth in water comes with a few “ABSOLUTE” contraindications and a few “CONTROVERSIAL” contraindications.

    Absolute contraindications

  • Pre-term labor
  • Excessive vaginal bleeding
  • maternal fever> 100.4, or suspected maternal infection
  • Any condition which requires continuous fetal heart rate monitoring
  • Untreated blood or skin infection
  • Sedation or epidural
  • Fearful Attendant
  • Inflexibility in the client

    Controversial contraindications

  • Meconium staining in amniotic fluid

    The presence of meconium should be evaluated with fetal well-being and taken by itself as a reason to ask the mother to leave the water. Meconium washes off the baby in the water. Baby can be suctioned as soon as it has been brought to the surface of the water. Some practices are now only limiting thick meconium cases.

  • HIV, Hepatitis A, B, C, GBS

    Evidence shows that HIV virus is susceptible to the warm water and cannot live in that environment. Proper cleaning of all equipment after the birth needs to be carried out. Hepatitis should be the discretion of the attending medical caregiver.
    There is absolutely no evidence that GBS positive cases should be asked to leave the water. Most hospitals allow IV antibiotic administration while in the water.

  • Herpes

    Some providers will cover the lesion, especially if it has peaked and is sloughing off. Others will require a cesarean. Some feel it is safer to deliver in the water due to the dilution effect of the water.

  • Breech or multiple births

    In the H. Surreys Hospital in Ostend, Belgium, frank breech is an indication for a waterbirth. Their vast experience has led them to believe that the absence of gravity, the warm water and the buoyancy create the perfect environment for a hands free breech birth. Labor in water for both breech and multiples is well documented and recommended. This should be a client/provider decision.

  • Shoulder Dystocia or Macrosomia with suspicion of Shoulder Dystocia

    This is usually considered an obstetric or midwifery emergency by most. Current protocols in most hospitals require the mother who is anticipating a large baby to leave the water. There is mounting evidence that providers find it is easier to assist a shoulder dystocia in the water. It is believed that tight shoulders happen more often because of mom or caregiver trying to push before the baby fully rotates. Better to wait a few contractions, with the head hanging in the water and allow baby to rotate. Because position changes in water are so much easier than dry land, a quick switch to hands and knees or even standing up with one foot on the edge of the pool helps to maneuver baby out. (research indicates that you can’t predict shoulder dystocia)

  • VBAC

    As the controversy over vaginal birth after previous cesarean section continues, it has been noted that mothers who labor for subsequent births have a much higher success rate in giving birth vaginally. Some hospitals refuse to allow women into the water because they don’t provide waterproof continuous fetal monitoring.

  • Intrathecal use

    A few hospitals will allow a mother into the water after receiving an intrathecal Monitoring of the baby is suggested as continuous, but some hospitals allow intermittent monitoring.

  • Induction or augmentation

    Many hospital practices will now allow mothers whose labors are initiated by Misoprostal or Pitocin to get in the pool as soon as a labor pattern is established.

    Some even allow mothers with a Pitocin drip to labor in water, as long as fetal heart rate assessment can be monitored with continuous underwater equipment.

  • Tight nucal cord

    Under no circumstances should the cord be clamped or cut under the water. Babies can be delivered through the cord and ‘unwound’ under the water. Be cautious of cord snapping.

  • Water temperature at time of birth

    Some providers will not allow women to birth in water that is lower than body temperature due to the possibility that the baby will attempt to inhale under the water from a change in temperature. There is no evidence that supports this theory, in fact there is more evidence that now shows that lower water temperatures increase the baby’s muscular activity and awareness.

    Water babies are slow to start breathing due to the delay in stimulation of the trigeminal nerve receptors in the face and around the nose and mouth. You must consider the birth of the baby from the time it leaves the water, not from the delivery of the baby into the water. German midwife, Cornelia Enning, states that babies are more vigorous at a temperature around 92-95 degrees Fahrenheit. If the mother is comfortable in the water, the temperature is OK for baby with only one restrictive parameter – NEVER higher than 100 degrees Fahrenheit.

  • Placental delivery in water

    There is no reason not to allow the birth of the placenta in water. Objections include inability to judge blood loss, possible water embolism and inability to contain all the by products of conception in one place. Evidence now shows that delivery of the placenta is safe, blood loss can be estimated by color evaluation and determination of where the bleeding is arising and there is absolutely no scientific basis for worry over water embolism. Placenta and pieces can be placed in a floating bowl in the water without difficulty. Cutting and clamping of the cord is not recommended with the delivery of the placenta in the water.

    Helpful reminders for the use of water immersion for labor and birth

  • Midwives should discuss the potential advantages and disadvantages of water immersion for labor and birth with each woman prior to labor.
  • The fetal heart should be monitored according to accepted guidelines. Use of a waterproof Doppler is recommended.
  • The woman should be encouraged to maintain adequate hydration and leave the pool to urinate at regular intervals.
  • The woman should be asked to leave the water if there are any concerns about her or her baby’s well being.
  • The water should be kept as clean as possible. Stool and blood clots should be removed from the pool immediately. The pool should be drained, cleaned and refilled if contaminants cannot be easily removed.
  • A small amount of blood often looks like a lot. Undisturbed blood in a pool often congeals at the bottom of the pool into a small clot.
  • The pool or tub should be deep enough for the mother to assume any position comfortably.
  • Encourage mother to help guide her own baby out.
  • Suturing may need to be delayed due to water saturation of tissues.
  • The baby should be born completely underwater with no air contact until the head is brought to the surface, as air and temperature change may stimulate breathing and lead to water aspiration. If a change in position during delivery causes the baby to come in contact with air, the birth should be finished in the air.
  • Care should be taken to avoid undue traction on the cord. There have been reports of cord tearing.
  • The warm water helps maintain the newborn’s temperature to prevent hypothermia. Keep baby submerged with head out only for best heat conservation. Next to mother is best.
  • Encourage breast contact immediately, but breastfeeding is not always possible in the water, especially due to water high water levels.
  • You can insert a footstool or other object (husband) to raise a mother up high enough after the birth.
  • Birth pools should be cleaned completely between uses with a chlorine-releasing agent. All pumps and hoses should also be rinsed with bleach.
  • Outdoor hot tubs are OK to use for labor and birth, if they are cleaned and maintained prior to the labor.
  • Jetted pools are ok to use if they are cleaned properly between patient use.
  • Small amounts of chlorine or bromine are not harmful to mothers or babiesAs when caring for any mother or newborn, the midwife is responsible for using her clinical judgment, responding appropriately to problems that may arise, and for documenting her actions.

    References

    Alderdice, R; Renfrew, M; & Marchant, S (1995) Labor and birth in water in England and Wales: Survey report. British Journal of Midwifery, 3. p 375 – 382.

    Balaskas, J (2004) The Water Birth Book. London: Thorsons.

    Beake, S. (1999) Water birth: a literature review. MIDIRS Midwifery Digest Vol 9 pp 473-477

    Burns, E. (2001) Waterbirth, MIDIRS Midwifery Digest, Supplement 2, S10 – S13.

    Burns, E & Kitzinger, S (2000) Midwifery Guidelines for Use of Water in Labor, Oxford Brookes University: Oxford.

    Eckert, K; Turnbull, D; MacLennan, A. (2001) Immersion in water in the first stage of labor; A randomized controlled trial. Birth, 28 (2) p 84-93.

    Enkin, Keirse, Neilson, Crowther, Duley, Hodnett and Hofmeyr (Eds) (2000) Control of Pain in Labour, in A Guide to Effective Care in Pregnancy and Childbirth Third Edition, Oxford University Press: Oxford.

    Enning, C. (2003). Waterbirth Midwifery: A training book. Hippokrates, Stuttgart, Germany

    Eriksson, M. Mattsson, L. Ladfors, L (1997 Sept) Early or late bath during the first stage of labour: a randomised study of 200 women. Midwifery, vol. 13 No 3 pp. 146-148

    Garland, D., Jones, K. (June, 1997). Waterbirth: updaing the evidence. British Journal of Midwifery Vol 5. No 6,368-373

    Garland, D. (Dec. 2002). Collaborative Waterbirth audit – “Supporting Practice with audit” MIDIRS Midwifery Digest, Vol 12, No 4, Dec 2002, pp 508-511

    Garland, D., Crook, S. (March 2004) Is the use of water in labour an option for women following a previous LSCS. MIDIRS Midwifery Digest Vol 14, No 1 pp 63-67

    Geissbuehler, V., Eberhard, J., (2000) Waterbirths: A comparative study, a prospective study on more than 2000 waterbirths. Fetal Diagnosis and Therapy Sept-Oct; 15(5):291-300

    Geissbuehler, V., Eberhard, J., Lebrecht, A., (2002) Waterbirth: Water temperature and bathing time – mother knows best! Journal of Perinatal Medicine 30(2002) 371-378

    Gilbert RE & Tookey PA (1999) Perinatal mortality and morbidity among babies delivered in water: Surveillance study and postal survey. British Medical Journal, 319(7208) p483-487.

    Harper, B (Summer 2000) Waterbirth Basics: from newborn breathing to hospital protocols. Midwifery Today, 54: 9-15, 68

    Harper, B (Dec 2002) Taking the plunge: reevaluating water temperature. MIDIRS Midwifery Digest, Vol 12, No 4, Dec 2002, pp 506-508

    Johnson, Paul. (1996). Birth under water-—to breathe or not to breathe. British Journal of Obstetrics and Gynaecology, 103: 202-208.

    Lenstrup, C., Schantz, A., Berget, A., Feder, A., Roseno, H. (1987) Warm tub bath during delivery. Acta Obstetrical Gynecology Scandinavia, 66, 709-12.

    Mackey, M. (2001), Use of Water in Labor and Birth, Clinical Obstetrics and Gynecology, Vol 44, No 4, pp 733-749

    Nikodem, VC Immersion in water in pregnancy, labour and birth. (Cochrane Review). In the Cochrane Library, issue 4, 2002. Oxford: Update Software

    Odent, M (1998 March) Use of water during labour – updated recommendations MIDIRS Midwifery Digest, Vol 8, No 1 pp 68-69

    Rush, J, Burlock, S. Lambert K (1996) The effect of whirlpool baths in labour: A randomized controlled trial. Birth, 23, p. 136-143.

    Waldenstrom U & Nilsson C. (1992) Warm tub bath after spontaneous rupture of the membranes. Birth, 19 p 57-62

    Waterbirth International (2004) unpublished Waterbirth Parent Survey, a retrospective analysis of over 3000 births in water.

Guidelines for the Prevention and Control of Infection from Water Systems in Healthcare Facilities

Guidelines for the Prevention and Control of Infection from Water Systems in Healthcare Facilities

Prepared by the Prevention and Control of Infection from Water Systems in Healthcare Facilities Sub-Committee of the HPSC Scientific Advisory Committee, 2015