Active Birth Pools News

March 2022

New midwifery research and studies

Water birth in Sweden – a comparative study

Waterbirth in low-risk pregnancy: An exploration of women’s experiences

Water birth: a national retrospective cohort study of factors associated with its use among women in England

A systematic meta-thematic synthesis to examine the views and experiences of women following water immersion during labour and waterbirth

The perceptions and experiences of women who achieved and did not achieve a water birth

Midwives’ experience of their education, knowledge and practice around immersion in water for labour or birth

Factors influencing water immersion during labour: qualitative case studies of six maternity units in the United Kingdom

Labouring women who used a birthing pool in obsteric units in Italy: prospective observational study

An economic evaluation of water birth

February 2022

The Active II Water Birth Pool – innovative design makes our pools safer and more user-friendly 

Launch of the revolutionary Venus II Water Birth Pool

These pools are the same width as the original models but slightly longer and marginally more expensive.

Space and budget permitting I suggest you consider the Active and Venus II Water Birth Pools as your first choice.

They are game changers that make a real difference to the experience of all concerned.

January 2022

Launch of Resource and Educational Centre

A comprehensive collection of publications covering all aspects of water birth, design, build and setting up of a water birth facilities. A one of a kind resource that is the product of our 35 years of dedication to serving the needs of mothers and midwives.


Alternatively  – use the search field in the top right of the page to find the information you’re looking for.

December 2021

Active Birth Pool installed to create water birth facility in the Midriff Hospital in Dubai.

November 2021

“Freedom of Movement” now has over 11,000,000 views on YouTube

The simple, short video shows how mothers instinctively relate to our pools and move naturally to find the most comfortable, supportive and beneficial positions. Watch on YouTube



Educational Centre – for mothers, midwives, healthcare professionals, planners and builders

Right from the start we have made education an important part of who we are and what we do.

Browse through the categories below or use the search engine to find the information you’re looking for.

Environmental considerations

Our water birth pools are made by hand in the England in a clean, modern, well ventilated factory that conforms to all relevant industrial laws.

Our waste disposal practices are in accordance with the Environmental Protection Act of 1990.

Our policy is to always first consider reusing and recycling followed by disposal with a licensed industrial waste management company.

A cornerstone of our business practices has always been a fundamental commitment to sustainability.

We employ bespoke manufacturing methods and specialised materials that minimise our carbon footprint, save energy and reduce waste.

Our pools are easier to maintain (less chemicals) and more energy efficient with heat loss at just .7 degree per hour (less hot water).

Waste disposal affects the environment in multiple ways.

Our birthing pools have a life span thats measured in decades rather then years.

Which means that during the life time of an Active Birth Pool you will have to replace other manufacturers pools 3 – 4 times.

We need to consider the disposal of these pools together the waste and disturbance that’s associated with refurbishments.

We also need to think about the impact that our water birth pools have on the birthing environment.

Active Birth Pools are not only the most beautiful, practical and safe, but the most conducive in helping mothers have an easier, more comfortable birth.

Mothers who use our pools spend less time in hospital which results in economies on resources and carbon footprint.


It’s safe and easy for mothers to get in and out of our pools

In a wet environment there is increased risk of slipping.

Issues relating to Health and Safety, Manual Handling and plain common sense must be considered.

Manual handling experts strongly advise against the use of step units 

Multi-step units are commonly used but, they present critical safety risks, even if they have a handrail.

To have mothers in strong labour climb up, step over the rim and down into the pool is not safe or practical.

These step units take up too much space, obstruct movement around the pool and are a trip hazard.

The Active Birth Pools way

The extra-wide rim and step unit make easy and safe for mothers to get in and out of our water birth pools.

Provision of a compact, single step gives the mother a height advantage.

She can step up – sit on the extra-wide rim and swivel into the water.

There is no climbing – she is grounded at all times and safeguarded from risk.

A simple, safe and economical solution.

The maths: 

When we looked at the dynamics at play we considered short women specially as taller women don’t even need the step!
A women 150cm (4’11”) tall has an inseam of about 68cm (27″).
The step is 15cm (6″)high. The rim is 75cm (29.5″)
Standing on the step she is has inner leg height of 83cm (33″) and can easily sit down on the rim and swivel in.

We’ve posted a short video on YouTube showing  just how easy it is for mothers to get into our water birth pools –please have a look










Superior material results in superior performance

Choice of material is fundamental to the success of a water birth pool.

Active Birth Pools are fabricated in Ficore® composite, a proprietary material of extra-ordinary properties that was developed to minimise problems associated with other materials.


A cross section of FICORE® composite

If you compare Ficore with Acrylic or Fibreglass you’ll notice the difference.

Ficore is a composite of eight different elements chemically fused during manufacturing, then heat cured at high temperature to create a material that is light in weight but ‘heavy’ in performance.

 Ficore® composite has many advantages:

  1. Superior heat retention
  2. Much higher degree of strength and durability
  3. Less slippery
  4. More tactile
  5. Warm to the touch
  6. Easily repaired if damaged
  7. More resistant to bacteria

Warm to the touch

You’ll notice a significant difference in temperature between Ficore  and the other materials.

Ficore is warmer due to the fact that it is composite resin that is much denser than acrylic and fibreglass.

Due to Ficore’s high insulation factor and double-wall construction Active Birth Pools maintain water temperature up to 7 x longer.

Structural and engineering advantages

If you hold two equivalent size samples of commonly used material in your hands and compared them you’d notice that the sample of Ficore is heavier, harder and much more rigid.

The surface of Ficore is isophthalic neo-pentyl-glycol that is 50% harder (stronger) than the materials other birth pools are made from.

Active Birth Pools fabricated in Ficore have an extremely high degree of structural integrity and will not flex, buckle, bow, or change shape under pressure.

Ficore’s unique qualities allow us to manufacture intricately shaped pools that fully serve the needs of mothers and midwives.

Extremely smooth and tactile 

The finish of our pools is highly polished, ultra-smooth, tactile and very pleasant to touch.

This makes them more appealing physically and approachable psychologically which  helps mothers relax and feel more at ease.

Incredibly high adhesion factor

When we talk about adhesion factor we are referring to slip resistance.

Run your fingers across the surface of an Active Birth Pool and you’ll immediately be impressed with how ‘sticky’ it is.

Compared to other materials Ficore® has a significantly higher adhesion factor.

Given the circumstances and environment this gives our water birth pools a crucial advantage.


Ficore is more impervious to damage than other bath materials.

However, if it is damaged, it can be completely repaired as new – unlike many alternative materials.

Ficore is able to withstand both continuous heat or hot water and thermal shock of alternating hot and cold water.

An Active Birth Pool manufactured in Ficore meets or exceeds all relevant regulations and will withstand the rigours of heavy hospital use and disinfection with caustic chemicals.





Educational Videos

“Freedom of Movement”

The simple, short video has garnered over 11,000,000 views on YouTube.

It shows how mothers instinctively relate to our pools and move naturally to find the most comfortable, supportive and beneficial positions.

Entering the pool  – the Active Birth Pools approach

The extra-wide rim and step unit make simple and safe for mothers to get in and out of our water birth pools.

Educational videos for midwives

Active Birth Pools sponsored these educational videos for All4 Maternity to help midwives gain knowledge and understanding about the use of water for labour and birth.

Emersion in water in labour and birth – Part One
Emersion in water in labour and birth – Part Two
For more videos + foreign language productions visit our YouTube Channel

Dealing with emergencies

Active Birth Pools give midwives safe, practical options for dealing with emergencies.

The evacuation a collapsed woman is potentially hazardous and poses risk of injury to mother and midwife.

If the need for an emergency evacuation arises the midwife should:

  1. summon help
  2. stabilise the mother
  3. turn the taps on to raise the water to rim level.

The buoyancy of the water reduces the relative weight of the mother by approximately 33% making it easier to move her and effect safe evacuation.

Midwives should float/move the mother onto a seat or support and hold her safely until help arrives.


  1. The mother should be screened to ensure that she meets the inclusion criteria prior to entering the birth pool.
  2. Continuous risk assessment is essential to reduce the incidence of emergencies in the pool.
  3. At the first sign of a contraindication the mother should be asked to get out of the water and assisted from the pool for monitoring and care.
  4. If the mother is unable to leave the pool under her own power or has collapsed an emergency evacuation will need to be conducted.
  5. A trolley should be available
  6. for the mother to be moved onto.
  7. Care must be taken that proper lifting techniques are employed to avert strain & injury.

Example 1: Emergency evacuation utilising the labour support seat


The mother has been moved onto and held on the labour support seat


The midwives guide the mother onto rim by sliding her up the side of the pool

Once on the rim she can be easily transferred onto a trolley


Example 2) Emergency evacuation utilising the safety seat


The mother is moved into position under the safety seat


The midwives glide her up the side of the pool


Onto the safety seat,

and then onto the rim for transfer onto the trolley


Active Birth Pools are portable hoist compatible

Manual Handling advisors may insist that women are evacuated from the birth pool with a hoist and that this facility is provided for.

Active Birth Pools are designed to accommodate a portable hoist should the need arise.

Clinical Guidelines – Royal Cornwall Hospital

Clinical Guidelines – Royal Worcester Hospital

Guideline for the Management of Women Requesting Immersion in Water  – Norfolk and Norwich University Hospitals

Operational Policy and Clinical Guidelines – Abbey Birth Centre

Birthspace: An evidence-based guide to birth environment design – Queensland Centre for Mothers and Babies

Use of water for labour and birth – Hywel DDA Local health Board

Guidelines for use of pool during labour and delivery – East Cheshire NHS Trust

Guiding principles for midwifery care during normal labour – Barking, Havering and Redbridge NHS Trust

Waterbirth care during labour for low risk women – Sandwell and West Birmingham Hospitals



Cleaning and Care

Safety comes 1st!

Active Birth Pools  are Rated No.1 for water safety and infection control standards.

This is because the material we use (Ficore) is 5 x harder than other materials and is immune to the effects of disinfection with 10,000ppm hypo-chlorite.

Seamless one-piece construction and the absence of surface mounted metal work deny micro-organisms the environment they need to propagate.

Active Birth Pools Cleaning and Disinfection Guidelines

This is a two-step procedure – first cleaning of the pool and surround, then disinfection of the pool and surround.

  1. Prior to emptying the pool remove debris and larger particles from the water with a sieve to prevent it from blocking or obstructing the outlet.
  1. Use the standard infection control precautions (plastic apron, disposable gloves and eye protection) when cleaning the pool. Ensure the area is well ventilated.
  1. Cleaning – use a non-abrasive detergeant with non-abrasive sponge or cloth to thoroughly clean the pool. Ensure the tap is cleaned first, so as not to transfer micro-organisms from the “dirty” pool area to the cleaner tap region. Rinse well with warm water.
  1. Disinfecting – use chlorclean or similar hypochlorite disinfectant following the directions on the packet for mixing the solution to the correct concentration for disinfecting the birth pool and surround.Do not use bleach as it is highly corrosive and could cause damage to the fittings.
  1. Apply the solution to the tap and spout prior to disinfecting the pool.
  1. There are 3 methods for disinfecting the pool that are commonly used in hospitals:

1) Fill the pool with cold water and add the requisite amount of disinfectant – leave for ten minutes.

The advantage of this method is that it is 100% effective but wasteful of water, time consuming and uses a large amount of disinfectant

2) Make up 2-3 litres of solution and pour it around the inside of the rim. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected.

3) Fill a spray bottle with disinfectant and thoroughly spray the surface of the pool and surround. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected

  1. Open the drain outlet and empty the pool of the disinfectant.
  1. Using cold water, rinse the tap then the pool to remove all traces of the disinfectant, to prevent any residue being left on the pool surface.
  1. Dry the entire surface of the pool using a new cloth or disposable mop head.
  1. Keep the drain outlet closed when not in use.

Please note: If you want to use a product that is not chloride based please contact us for approval.

Damage resulting from higher water temperatures, steam cleaning or use of products not approved by Active Birth Pools will not be covered by our guarantee.

If you are duty flushing the taps with hot water/steam add 10cm of cold water to the pool first.

Protocols from hospitals using Active Birth Pools.


How to restore your old birth pool to pristine condition

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

Related information:


Improved Water Birth Pool Design

In mid-90’s we met with health service ergonomist Sue Hignett to discuss ways our water birth pools could be improved to better serve the needs of mothers and midwives.

This lead to the ground-breaking innovations in design, materials and manufacture that have culminated in todays range of award winning Active Birth Pools.

Design is based upon the dynamics of mothers and midwives as they interact with the pool and each other. Every shape, every curve, every varying degree of rounded corner – there is a reason behind them.

Our new water birth pools take the 5 points outlined on Pg. 2 of the article (below) to new levels of sophistication thanks to the properties of the unique material (Ficore® composite) we now use.

We longer advocate the use of multi-step units as this has proven to present manual handling risks. The pools are now lower and have wider rims which gives mothers better options for getting in and out of the pool.

The new range of water birth pools is not only much more beautiful, but more comfortable, safer and easy to use.

Click here for a PDF of this article

Based upon the design principles we originated in the mid-90’s the new Active II Water Birth Pool in Ficore composite takes them to a new level

Health and safety concerns

Many water birth pools on the market are equipped with features that at first might seem safe or even an advantage, but in reality present risks.

(We’re not showing images of other birth pools to illustrate the points below as this could be contentious.)

Re-circulating water systems

Re-circulating or pumped systems with jets such as whirlpools and  jacuzzi present the perfect conditions for the growth of micro-organisms.

Water systems like these present the highest levels of risk as they produce aerosols.

Aerosols are generated when the water surface is broken – for example, by falling water droplets, splashing, or by bubbles breaking at the surface.

Once introduced to these systems, Legionella and Pseudomonas thrive and can become aerosolised and then inhaled.

Integral Plumbing Systems

Plumbing systems like these utilise flexible and non-flexible piping, overflow drains, handheld showers, pumps, hoses, heaters, surface mounted fittings and filters.

 These systems are impossible to clean, disinfect or monitor and therefore present an extremely high Infection Control Risk.

Stagnant water within the system is an ideal breeding ground for bacteria.

UK regulations state that water birth pools fitted with thermostatically controlled  mixer taps plumbed directly into the hospitals water supply.

2018: Active Birth Pool at the award winning Meadow Birth Centre, Worcester

Hand held showers

Handheld showers present a significant infection control risk.

If the shower head falls in the pool it may be contaminated with bacteria that could breed and be passed on next time the shower is used.

Department of Health regulations clearly stipulate that handheld showers and bath/shower mixers are not installed for use with water birth pools as they present a Fluid Category 5 risk to the mains water supply.

N.B. There are systems available that enable you to detach the hose and shower head from the tap. These are permissible as long as the shower fittings are detached when the pool is in use and only employed afterwards for cleaning.

Pumped heating systems

Heating systems for water birth pools are not necessary and present unacceptable infection control risks.

Water is pumped through a heat exchanger and then back into the pool creating the ideal environment for bacteria to breed.

These systems present one of the highest infection control risks and should not be utilised.

Bacteria filters and disinfection systems

Some water birth pools are equipped with these devices in an attempt to mitigate the risk of infection and bacteria infestation that are inherent in built-in plumbing systems.

Bacteria filters and disinfection systems can not be relied upon and will not guarantee adequate hygiene standards.

2019: Venus Water Birth Pool, Peterhead Hospital

Overflow drains

Overflow drains harbour bacteria and can serve as a conduit for cross infection.

Regulations are very clear on this point.

Overflow drains should not be fitted to water birth pools as they constitute a constant infection control risk.

Surface mounted metalwork

Metalwork such as grab rails, taps and handles are an obstacle that comes between mother and midwife.

These fittings ALL present a serious infection control risk as the space between the surface of the pool and the fitting are perfect for bacteria.

Remember – bacteria are microscopic – even though the fitting may appear flush to the surface of the pool there is space for bacteria!

The Active Birth pools approach:

Thanks to the amazing properties of Ficore composite (the material we make our pools from) we’re able to bind the hand rails directly into the fabric of our pools.

Our lighting and drainage fittings are of the highest quality and have been inspected and passed by infection control specialists world-wide.

Double step units

In breech of Manual Handling protocols.

Mothers must not climb up and step over the sides of the pool to enter the water.

When not in use these step units present an obstacle and trip hazard.


There is no reason for a water birth pool to have a door and many reasons why they should not.

Doors are mistakenly used for two reasons:

  1. To facilitate emergency evacuations
  2. To help mothers get in and out of the pool

Doors present an extremely high risk of infection and should be banned from use in water birth pools for this reason alone.

The door seal (typically foam or rubberised material) is the perfect breeding ground for bacteria.

From manual handling perspective doors are not practical or fit for purpose. They actually complicate emergency evacuations and put mothers and midwives at risk.

The Active Birth Pools approach:

Click here to find out how our birth pools give midwives safe, practical options for handling emergency evacuations.

Click here to find out how safe and simple it is for mothers to get into an Active Birth Pool.

Height adjustable pools

Manufacturers of these pools say that height adjustment makes midwives more comfortable and less likely to strain or injure themselves.

They are completely wrong!

Given the choice of standing or sitting comfortably in a stationary position for an extended period of time we all choose to be seated.

It’s that simple.

If you look at photos of midwives standing by elevated birth pools you’ll see that they are often uncomfortable.

If you look at photos of midwives sittingby the pools you’ll notice how the solid, vertical sidewall prevents them from getting their legs under the pool.

They are forced to sit with their legs and feet splayed wide  apart which  is not only uncomfortable but places considerable strain on her lower back.

If you’re considering a pool with one of these systems I suggest that you talk with midwives who’ve used them, look at photos and videos of them in action and then consider how much better off you’d be with an Active Birth Pool.

From a mothers standpoint I can’t imagine how she feels sitting in a big elevated bath tub in the middle of the room with people standing around her.

Mothers need to be grounded to give birth not hydraulically lifted.

The Active Birth Pools approach:

The crucial elements that make the difference are the rounded extra-wide rim and flowing concave skirting panel.

Look at the midwife in the photo above.

Notice how comfortable the she is?

Grounded with her feet forward, body upright, head aligned and arms resting comfortably on the wide round rim.

No other birthing pool on the market comes close to giving mothers and midwives this level of comfort and support.




Better births

The keyword that defines our approach to design is ‘Active’.

If we look up the definition of ‘Active Birth’  we get, “Childbirth during which the mother is encouraged to move around freely and assume any position which feels comfortable”.

Active Birth Pools provide mothers with the space and depth to move freely in the postures natural to labour and birth.

As she moves, she intuitively discovers features that provide support and make her more comfortable.

Other birth pools have elaborately moulded interiors that can be described as an “obstetric chair in a bath”.

These birth pools typically have very little floor space or room to move.

As Sheila Kitzinger wrote in her article ‘The clock, the bed, the chair’ published in 2003:

“Even a recent innovation, the birth pool, does not always permit free movement. In theory, a pool allows a woman, supported by water, to move unencumbered.

Or so it might be thought.

Though published research often refers to mobility as an advantage of being in a pool, some pools are elaborate constructions with seats, handgrips and foot-rests, and movement in them is restricted.”

The pool dictates the position the mother should be in by placing her in a semi-recumbent posture with hand holds and foot rests to fix the arms and legs.

Mothers are positioned in the classic lying back with legs wide-open position but happen to be immersed in water.

The seats in these water birth pools are typically tilted backwards. The mother is immobilised in a position with her pelvis tilted upwards resulting in her  pelvic outlet being up to 30% smaller.

This puts pressure on the sacrum which flexes upward, into a curved position that restricts the diameter of the pelvic outlet inhibiting the baby’s descent.

The birth canal is placed in an “uphill” orientation, forcing the mother to push upward against gravity to give birth to her  baby.

These seats and moulded fittings greatly reduce the space the mother has to move in and restricts her ability to use the positions most beneficial.

The benefits of labouring in water are largely negated. The possibility of a physiological labour and natural birth is greatly reduced.

By contrast the Active Birth Pool gives mothers plenty of room to move with an unobstructed floor area that measures 1200 x 800mm.

A water birth pool should have features and design elements that support the mother as she changes position rather than dictate the position she is in.

Mothers experience maximum advantage of the benefits that water offers to help increase the likelihood of a physiological labour and natural birth.

‘Freedom of Movement video’ 

To see how mothers benefit from complete freedom of movement click on the link above.

This short home made video shows how the mother relates to the pool and the natural flow of movement that ensues. It has been hugely popular on YouTube.


Water Birth Safety Initiative

Hospitals in the United Kingdom began allowing women to use specially designed pools of water for labour and birth during the 1980’s.

The wide-spread popularity and acceptance of water birth pools as a standard part of the maternity care package necessitated the development of guidelines & regulations to define standards and ensure they’re met.

The United Kingdom Department of Health has published a panoply of water safety directives that apply to water birth pools.

Policies and recommendations set forth in the Water Birth Safety Initiative are based upon these publications.

The Water Birth Safety Initiative (WBSI) calls for development of international standards modelled on the UK’s so that women the world over can benefit from the use of water for labour and birth safeguarded from risk.

The WBSI calls for the implementation of stricter protocols and sets forth recommendations for equipment standards.

The guidelines set forth in the WBSI are intended to serve as a framework of standards for birth pool suppliers, hospitals and midwives to work with to establish  safe codes of practice.

Guidelines for Water Birth Pools Installed in Hospital

Water is more prone to bacteria growth after it leaves the public water distribution system and enters a building’s plumbing.

There it finds warmer temperatures, stagnation, and smaller pipes, valves and fittings.

Biofilm that forms on valves and fittings and pipe walls not only feeds bacteria but also protects them from the hot water and chlorine that typically would kill free-floating organisms.

Large systems with complex piping networks — like those found in hospitals, hotels and large apartment buildings — are especially prone to bacteria growth.15

Water Birth Pools that are installed in hospitals have the benefit of being maintained by staff to ensure that protocols are established, met and maintained.

Consideration and due diligence with regard to the prospective purchase of water birth pools and the assessment of pools already in use needs to be taken to ensure that the associated plumbing and electrical systems meet relevant safety standards.

The United Kingdom’s Department of Health and National Health Service has an exemplary safety record achieved by establishing rigorous sets of guidelines and regulations for the design, installation, use and maintenance (cleaning/disinfection) of water birth pools.

In the UK water birth pools are classed as a Category Fluid 5 water risk which represents a serious health hazard due to the concentration of pathogenic organisms, radioactive or very toxic substances, e.g. containing faecal material or other human waste; butchery or other animal waste or pathogens.

Water Birth Pools must be installed in compliance with water regulations as set forth in The Water Supply (Water Fittings) Regulations 1999.11

The 7 sins of water safety

To ensure high standards are met it is strongly advised that you do not use a water birth pool that has any of these features:

  1. Overflow drains
  2. Internal water inlets
  3. Hand-held showers
  4. Systems with flexible hoses or extended pipes
  5. Integral or secondary plumbing systems
  6. Any type of recirculating or pumped water systems such as whirlpool, jacuzzi, spa, bubbling, filtering etc
  7. Heating systems

1) Overflow drains

Overflow drains harbour bacteria and can serve as a conduit for cross infection.

Regulations are very clear on this point – overflow drains should not be installed on water birth pools as they constitute a constant infection control risk much more significant than the possible risk of damage due to water overflowing.11,12

Some digital taps on the market can be set for filling time thus obviating the risk of the pool overflowing.

2) Internal water inlets

Internal water inlets act in place of taps to fill the pool.

They are installed on the inside of the pool just above the water line and connected with pipework to a thermostatic valve.

If the water level rises there is a high risk of back flow enabling bacteria to enter the system creating a risk of cross infection.7

3) Handheld showers

Handheld showers present a significant infection control risk due to the fact that they can fall in the pool and be contaminated with bacteria that could breed and be passed on next time the shower is used.

Department of Health regulations clearly stipulate that handheld showers and bath/shower mixers are not installed for use with water birth pools. 13

Handheld showers present a Fluid Category 5 risk to the mains water supply.

It must not be possible to submerge the showerhead in the water due to risk of cross infection.

In order to comply with category 5 water regulations covering back siphonage, a class AUK3 air gap would be required, which generally prevents the use of handsets, unless there is a separate break tank installed in the hospital plumbing system.

4) Systems with flexible hoses or extended pipes

Systems that employ flexible piping, have branch pipes or hold stagnant water present a potential hazard and must not be used with water birth pools.

It is impossible to clean, disinfect or monitor these systems.

They have been proven to be a source of Legionella and Pseudomonas. 14

Weekly flushing recommendations recommended by the department of health cannot be executed with such systems, and the effectiveness of this cannot be monitored due to the inacessibility of the closed system.

5) Integral or secondary plumbing systems

Integral, secondary or proprietary plumbing systems are fitted to some water birth pools.

As these systems can employ flexible and non-flexible piping, overflow drains, handheld showers and are often pumped or recirculating they present a significant infection control risk and should be banned from use.

Regulations stipulate that water birth pools are filled from thermostatically controlled wall mounted mixer taps plumbed directly into the hospitals water supply with the minimum of pipework.

Not only do secondary or integral plumbing systems present unacceptable risks, they are impossible to clean, disinfect or monitor and therefore present an extremely high and unacceptable infection control risk.

They must not be present on pools used for labour and birth. 10

6) Recirculating or pumped water systems

Recirculating or pumped water systems such as whirlpool, jacuzzi, spa, bubbling, filtering etc. have the perfect environmental conditions to be a potential source for the growth of microorganisms, including legionella bacteria and must not be installed on water birth pools.

Water systems that are able produce aerosols represent the highest levels of risk.

Aerosols can be generated very easily when the water surface is broken -for example, by falling water droplets, splashing, or by bubbles breaking at the surface.

Once introduced to artificial water systems, Legionella can thrive in warm water (30 – 35 °C) and has been shown to be present on flexible seals and metal surfaces within plumbing systems used in domestic potable water supplies.

Inadequately maintained spa pools (birth pools with pumped or recirculating systems) provide ideal conditions to support the growth of legionellae and other microorganisms, which may then become aerosolised and subsequently inhaled.15

7) Heating systems

Heating systems for water birth pools are not necessary and present unacceptable infection control risks.7

There are two types of heating systems in use:

1. Recirculating system with a heat exchanger

Water is pumped out of the pool and through a heat exchanger and then flows back into the pool.

These systems present one of the highest infection control risks and should not be installed on a water birth pool under any circumstances. (covered by points 4, 5 and 6 above).

2. Electric heating systems

Similar to under floor heating found in homes do not present an infection control risk.

But, they do present an unacceptable health and safety risk and should therefore not be installed in water birth pools.

These systems consist of a network of cables embedded in the fabric of the birth pool that are attached to the power supply through a thermostat.

The heat is transmitted from the cables through the floor of the pool and then transferred to the water.

The inherent problem with these systems is that the water is relied on to take the heat away from the material.

If a woman remains motionless the heat becomes concentrated and a “hotspot” develops which can result in the woman being burned.


Plumbing for filling and emptying water birth pools should be simple, straight forward and kept to the minimum.

A set of taps (see below) mounted on the wall 15cm above the rim and a drainage system similar to that of a normal bath is all that is required.

Rim mounted taps present two areas of risk:

1. Women may hit their head on taps that are mounted on the rim of the pool causing injury.

In the throes of labour a woman is not as cognisant of her surroundings as she normally is.

She needs to be protected from the potential harm that could result from hitting her head or other part of her body on the spout.

2. Risk to the taps and pool caused by the labouring woman grabbing onto the spout for support could easily cause damage to the fitting or fabric of the pool.

Filling the birth pool

Water Birth Pools should be filled directly from the hospitals main water supply through a ¾ Thermostatic Mixing Valve (TMV).

To comply with UK National Health Service regulations the valve must have TMV3 approval for use in Healthcare and Commercial situations and certify that it conforms to the performance requirements of the Department of Health.16

To kill legionella and other bacteria, water in hospitals systems is heated to 60 – 80 °C.

Water temperature entering the birth pool should be limited by the TMV to 44 °C to prevent scalding.

The added benefit of using a TMV connected directly to the hospitals main water supply is that it can be set to automatically flush itself of stagnant water twice a day and be thermally disinfected periodically.


The use of a TMV ensures a safe water supply.

Digital thermostatic mixing valves with enhanced thermal performance that incorporate these features are ideal:

1) Programmable control to accurately mix and maintain the temperature of the water flowing into the birth pool and limit the temperature of the water to 44 °C to prevent scalding.17

2) Programmable fill duration to fill the pool to the desired depth and then turn off.

This is important as water birth pools are not allowed to have overflow drains installed and this feature will prevent the pool from overflowing when unattended.

3) Programmable duty flushing to ensure that water does not stagnate within the tap and associated pipe work, effectively controlling the multiplication of legionella & other bacteria in infrequently used outlets.

Flushing duration is in line with HSE L8 recommendations.18

4) Programmable high-temperature thermal disinfection to destroy the proteins in viruses and bacteria and render them as dead or inert.

Thermal disinfection works by achieving a moist heat which is set at a specific temperature for a set amount of time.

Viruses and bacteria are very sensitive to heat and they will die if exposed to higher temperatures. 19

Emptying the Pool

Water from a birth pool needs to be treated as Fluid category 5 waste representing a serious health hazard due to the concentration of pathogenic organisms derived from fecal material or other human waste and emptied directly into the hospital’s waste water system.20

The pipework needs to have a trap or U bend fit as close to the waste/drain as possible.

The drainage fitting or waste should seal neatly into the drain.

The drainage fitting should be cleaned and flushed through with disinfectant and then dried as part of the cleaning protocol.

The waste should be kept closed when the pool is not in use.

There should be NO flexible pipe used in the drainage pipework.21

The waste should be remotely operated (i.e. pop up waste with rim mounted control) and of the best quality, preferably high-grade brass, to resist the corrosive action of chlorides and other disinfectants.


End notes

The Water Birth Safety Initiative was conceived by Keith Brainin to motivate and enable birth pool suppliers and health care professionals to raise standards and implement protocols to make water birth safe.


[1] Healio – Infectious Disease News. (2014, December 26). Legionellosis death after water birth sparks call for stricter infection control protocols. management/news/online/%7Bfe352169-755d-4d21-9bb2-abb8ae209f89%7D/legionellosis-death-after-water-birth-sparks-call-for-stricter-infection-control-protocols

[2] Inquisitr. (2015, January 16). Oregon Water Birth Leaves Baby Disabled, Lawsuit Wants Labor Options Banned.

[3] GOV.UK. Alert after Legionnaires’ disease case in baby, 2014.

[4] The Guardian. Legionnaires’ disease in baby is linked to heated birthing pool, June 17, 2014.

[5] Guidance from the  Water Regulations Advisory Scheme (WRAS)

[6] M.W. LeChevallier, 2003 World Health Organization (WHO). Conditions favouring coliform and HPC bacterial growth in drinking- water and on water contact surfaces. Heterotrophic Plate Counts and Drinking-water Safety. Edited by J. Bartram, J. Cotruvo, M. Exner, C. Fricker, A. Glasmacher. Published by IWA Publishing, London, UK. ISBN: 1 84339 025 6.

[7] Public Health England advice on home birthing pools, 2014.

[8] Health and Safety Executive. (2013). Legionnaires’ disease: Technical guidance [3.4], 2013.

[9] United Lincolnshire Hospitals NHS Trust UK. Cleaning, Disinfection and Sterilization Guidelines for Re-Usable Medical Devices 2010.

[10] Case of legionnaires’ disease in a neonate following an home birth in a heated birthing pool. England, June 2014

[11] Water Regulations Advisory Scheme (WRAS). Fluid Categories.

[12] WHBN 00-10 Welsh Health Building Note. Part C: Sanitary assemblies2014,

[13] Department of Health, Children, young people and maternity services. Health Building Note 09-02: Maternity care facilities, 2009.

[14] Freije, Matthew R. Some waterborne bacteria are tough, 2010.

[15] Woolnough, Kevin. Legionella Expert Calls for Greater Vigilance, 2014.

[16] BEAMA. TMV Standards and regulations, 2013.–air-movement/thermostatic-mixing-valves/tmva-faqs-on-thermostatic-mixing-valves/tmv-standards-and-regulations.cfm

[17] Health and Safety Executive. Managing the risks from hot water and surfaces in health and social care, 2012.

[18] Health and Safety Executive. Legionnaires’ disease The control of legionella bacteria in water systems, 2013.

[19] Health and Safety Executive. Managing legionella in hot and cold water systems.

[20] SMS Environmental – the water experts. Fluid Categories.

[21] Nottingham University Hospitals NHS Trust. Legionella Management and Control Procedures, 2014.


  • Ashford and St. Peter’s Hospitals, Women’s Health and Paediatrics Division (Abbey Birth Centre). Operational Policy and Clinical Guide, 2014.
  • BEAMA. TMV Standards and regulations. 2013.–air-movement/thermostatic-mixing-valves/tmva-faqs-on-thermostatic-mixing-valves/tmv-standards-and-regulations.cfm (accessed 2014 йил 24-09).
  • Buckinghamshire Healthcare NHS Trust. Water birth and use of water in labour guideline. Prod. Miss G Tasker and Audrey Warren. 2013.
  •  Dekker, Rebecca. “Evidence on the Safety of Water Birth.” 2014. (accessed 2014 10-09).
  • Department for Environment, Food and Rural Affairs. Water Supply (Water Fittings) Regulations 1999 Guidance Document relating to Schedule 1: Fluid Categories and Schedule 2: Requirements For Water Fittings. 1999.
  • Department of Health. Children, young people and maternity services Health Building Note 09-02: Maternity care facilities. 2009.

—. “Health Building Note 00-09: Infection control in the built environment.” 2002. (accessed 2014 6-12).

—. “Health Technical Memorandum 64: Sanitary assemblies.”  2006. (accessed 2014 10).

—. “Water systems Health Technical Memorandum 04-01: Addendum” .2013. (accessed 01 2014-10).

 —. “Water systems Health Technical Memorandum 04-01: The control of Legionella , hygiene, “safe” hot water, cold water and drinking water systems”. 2006.

  • DH, Estates & facilities. Water systems Health Technical Memorandum 04-01: Addendum . Department of Health, Department of Health.
  • Elizabeth R Cluett, Ethel Burns. Immersion in water in labour and birth. 2009. (accessed 2013 13-05).
  • Elyse Fritschel, Kay Sanyal, Heidi Threadgill, and Diana Cervantes. Emerging Infectious Diseases.CDC. Centers for Disease Control and Prevention. CDC. 2014. (accessed 2015 5-January).
  • Freije, Matthew R. Some waterborne bacteria are tough . 2010. (accessed 2015 20-01).
  • GOV.UK. Alert after Legionnaires’ disease case in baby. 2014. (accessed 2014 3-12).
  • GOV.UK. Public Health England advice on home birthing pools. 2014. (accessed 2014 03-August).
  • Healio – Infectious Disease News. Legionellosis death after water birth sparks call for stricter infection control protocols. 2014. (accessed 2015 07-01).
  • Health and Safety Executive. Legionnaires’ disease The control of legionella bacteria in water systems. 2013. (accessed 2014 07-07).

—. “Legionnaires’ disease: Technical guidance.”  2013. (accessed 2014 20-10).

—. Managing legionella in hot and cold water systems. (accessed 2015 07-01).

—. “Managing the risks from hot water and surfaces in health and social care.”  2012. (accessed 2014 20-11).

  •  Health Facilities Scotland. Consultation draft of SHTM 04-01 Water Safety for Healthcare Premises Part G: Operational Procedures and exemplar Written Scheme 2013. Health Facilities Scotland.
  •  Inquisitr. Oregon Water Birth Leaves Baby Disabled, Lawsuit Wants Labor Options Banned. 2015. (accessed 2015 16-01).
  •  Laura Franzin, Carlo Scolfaro, Daniela Cabodi, Mariangela Valera, and Pier Angelo Tovo. Legionella pneumophila Pneumonia in a Newborn after Water Birth: A New Mode of TransmissionOxford Journals, November 2001: 104.
  • Legionella Control. Birthing Pool Death Linked To Legionnaires disease. (accessed 2014 27-11).
  • The Water Supply (Water Fittings) Regulations 1999.The National Archives. 1999. (accessed 2015 05-01).
  •  M.W. LeChevallier, World Health Organisation. Conditions favouring coliform and HPC bacterial growth in drinkingwater and on water contact surfaces . 2003.
  •  N Phin, T Cresswell, F Parry-Ford on behalf of the Incident Control Team. CASE OF LEGIONNAIRES’ DISEASE IN A NEONATE FOLLOWING A HOME BIRTH IN A HEATED BIRTHING POOL, ENGLAND, JUNE 2014. 2014. (accessed 2015 10-01).
  •  Nottingham University Hospitals. LEGIONELLA MANAGEMENT AND CONTROL PROCEDURES. May 8, 2014.
  • Rosanna A. Zanetti-Daellenbach, Sibil Tschudin, Xiao Yan Zhong, Wolfgang Holzgreve, Olav Lapaire, Irene Ho ̈sli. Maternal and neonatal infections and obstetrical outcome in water birth . Prod. Women’s University Hospital Basel. Spitalstrasse, Basel: European Journal of Obstetrics & Gynecology and Reproductive Biology , 2006 28-August.
  • SMS Environmental – the water experts. Fluid Categories.
  • Takuhito Nagai, Hisanori Sobajima, and Mitsuji Iwasa. A fatal newborn case of Legionella pneumophila pneumonia occurring after water birth in a bathtub with an all day circulating system, June 1999 – Nagoya City. 2000. (accessed 2014 17-06).
  • Takuhito Nagai, Hisanori Sobajima, Mitsuji Iwasa, Toyonori Tsuzuki, Fumiaki Kura, Junko Amemura-Maekawa, and Haruo Watanabe. Neonatal Sudden Death Due to Legionella Pneumonia Associated with Water Birth in a Domestic Spa Bath. 2002. (accessed 2014 3-12).
  • The Guardian. Legionnaires’ disease in baby is linked to heated birthing pool . 2014. (accessed 2014 18-June).
  • U.S. Department of Health and Human Services Centers for Disease Control and Prevention (CDC) Atlanta, GA 30333. Guidelines for Environmental Infection Control in Health-Care Facilities . 2003.
  • Water Regulations Advisory Scheme. Fluid Categories . (accessed 2014 3-12).
  • Having a water birth and using birth pools.
  • Woolnough, Kevin. Legionella Expert Calls for Greater Vigilance. (accessed 2015 17-01).

Please feel free to distribute and share this document crediting  © K. D. Brainin (Active Birth Pools) 2015

Water Birth Pools: The economic reality and impact

I wrote this article a few years ago.

It seems particularly relevant now.

Recent news has highlighted the restrictive financial environment that maternity units will be expected to operate in.

Yet, at the same time midwives are charged with the important task of improving the quality of care and services.

David Cameron has said, “The whole aim of these NHS reforms is to make sure we get the value for the money we put in.”[1]

In the same article, Stephen Dorrell, former Health Secretary commented that, “In real terms, the NHS budget was being broadly maintained, but we’re having to find ways of doing more with the same amount of money.”[2]

The only way of improving maternity services is by optimising facilities, saving money wherever practical and normalising childbirth to a far greater extent.

Studies have shown that women who are supported during labour need to have fewer painkillers, experience fewer interventions and give birth to stronger babies.

After their babies are born, supported women feel better about themselves, their labour and their babies.

A focus on normalising birth results in better quality, safer care for mothers and their babies with an improved experience.

Increasing normal births is associated with shorter (or no) hospital stays, fewer adverse incidents and admissions to neonatal units and better health outcomes for mothers.

It is also associated with higher rates of successful breastfeeding and a more positive birth experience.

These changes benefit not only women and their families but also maternity staff.  Midwives are able to spend less time on non-clinical tasks and more on caring for women and their babies.

Psychologically speaking, and in particular for first time mothers, the less intervention and a more hands on approach with one-to-one support means that mothers will leave hospital feeling held and therefore far better prepared for motherhood.

This again has a domino effect, not just on the welfare of the infant, but also circumventing the need for costly government and LA interventionist approaches in particular for younger mothers post-partum.

What increases the likelihood of normal births?

It is also known that some factors help to facilitate straightforward birth without evidence of additional risks, including one-to-one support, immersion in water for low-risk women, planning for a home birth, care from known midwives, more extensive training of junior doctors, employment of consultant midwives focusing on normality, and support on the labour ward from consultant obstetricians[3].

How can midwives make a case for purchasing birth pools?

The need for more water birth facilities is evident.  The problem is that financial controllers are under pressure to save money.

They will not be easily convinced of the necessity unless you clearly stress that purchasing pools should not be viewed as a cost but rather to make the case that they are a valuable investment and will enable your unit to optimise resources, improve the quality of care and yield a return of significant financial savings.

A birth pool is a simple, inexpensive piece of medical equipment that can have a major impact on the quality of care and cost of having a baby.

The bed is no longer the primary focus of the room: having birth pools in hospitals and delivery suites facilitates pain relief encourages relaxation and therefore confidence and promotes mobility along with soft furnishings such as beanbags.

Importantly, this results in significant financial savings! 

Our cost study has revealed that savings of up to £700.00 per birth can be achieved.

For example, St Richards Hospital in Chichester has three of our birth pools as well as our soft furnishings.

They recently reported their first successful VBAC in the pool for a woman who had previously had twins by c-section.

Depending on complications, a c-section costs between £1,370 and £1,879 in contrast to a normal delivery that is usually between £735 and £1,097.[4]

The experience of hospitals that have birth pools demonstrates that the cost of installing a pool is soon recouped by the savings achieved through reduced use of medical methods of pain relief and shorter hospital stays.

Wherever possible, women should have the opportunity to labour in water, as this is often far more comfortable.

The NHS has advised hospitals to ensure facilities are in place for this: three pools for 1,000 births a year is seen as adequate provision[5].

[1] BBC: 19/01/11
[2] BBC 19/01/11 taken from BBC Radio 4 Today programme
[3] Hodnett ED, Gates S, Hofmeyr GJ, Sakala C.  Continuous support for women during childbirth. Cochrane Database of Systematic Reviews 2007, Issue 3. Art. No.: CD003766. DOI: 10.1002/14651858.CD003766.pub2
[4] NHS Institute, 2009
[5] NHS Guidelines on Childbirth 26 September 2007

How to restore your old birth pool to pristine condition

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

For information about cleaning and disinfection procedures please click here.




The use of water for labour and birth

Health Times: Karen Keast

Water is a life force in more ways than one – it covers more than 70 per cent of our earth and we drink it to survive.

When it comes to using water for childbirth, water birth is still a contentious issue that divides healthcare professionals and organisations alike.

The fact that it’s contentious at all surprises some of Australia’s leading midwives, writes Karen Keast.

There are legends of Egyptian pharaohs being born in water and of South Pacific women giving birth in shallow seas.

The first written report of a water birth in the western world occurred in France in 1803, when a mother experiencing a long and difficult labour was helped to give birth in a tub of warm water.

In the 1970s, Igor Tjarkovsky, a boat builder, investigated the therapeutic benefits of water and installed a glass tank in his home for women to use for childbirth.

French obstetrician Michel Odent went on to pave the future of water birth.

After a mother, using water to ease the pain of her labour, accidentally gave birth in the water, he went on to install a plastic paddling pool in a hospital so more women could enjoy the benefits of water birth while reducing their need for painkillers.

Only a small proportion of women in Australia choose to give birth in water each year although the exact number of water births is not known.

Griffith University Professor Jenny Gamble, a practising midwife of 30 years, says water births have come a long way in Australia but there is still a long way to go.

Professor Gamble recalls when a new maternity wing opened up at a Brisbane hospital, the then director general who was touring the facility instructed the plugs from the tubs to be removed.

“In his own way, he was saying water births might be a bad thing,” she says.

“Those days are gone. Water has become more accessible to women. There’s quite a lot of evidence to say that water is safe for women.

“More and more hospitals are putting in big tubs and there’s a range of deep tubs. It’s coming but it’s all too slow.”

Advocates of water birth say its benefits include the relaxing effect of warm water and feelings of weightlessness, buoyancy and ease of movement which help to alleviate pain naturally.

Western Sydney University Professor Hannah Dahlen, a privately practising midwife and spokesperson for the Australian College of Midwives, says evidence shows water immersion may also help improve blood flow in the uterus, lower blood pressure, provide less painful contractions and result in shorter labours and fewer interventions.

Professor Dahlen last year published a study in the Journal of Midwifery examining the outcomes of 6144 Australian women who had normal vaginal births in a birth centre over a 12-year period.

Her research compared women giving birth in water with those who gave birth in six other positions out of the water – kneeling or all fours, squatting, side lying, using a birth stool, standing and, the most common birth position in the country – semi-seated.

Professor Dahlen found those who gave birth on a birth stool had almost a one-and-a-half time’s higher rate of major perineal trauma and more than twice the rate of haemorrhage after delivery compared with water birth.

There was no difference in major perineal trauma and haemorrhage after delivery between women who gave birth in water and those who had a semi-seated position.

While those babies born in a semi-seated position had a four-and-a-half time’s higher incidence of five minute APGAR scores less than seven.

APGAR scores, which rate the newborn’s breathing effort, heart rate, muscle tone, reflexes and skin colour, of less than seven at five minutes after birth indicate medical intervention was needed to resuscitate the baby.

“Some studies have shown better outcomes but basically I found no difference to other birth positions,” she says.

“There was no evidence of harm. We want to do more research in Australia.

“We have no evidence to date that it’s harmful but we need more and more evidence to show it’s safe.”

Professor Dahlen says a water birth also provides women with a sense of protected space.

“They talk about how they felt there was a barrier; they felt it was a cocoon where they could feel safe,” she says.

Professor Dahlen says one common concern about water births is that the baby could drown but she says babies are born with a diving reflex, or bradycardic response, that causes them to hold their breath under water.

Professor Dahlen says despite mounting evidence proving the benefits of water birth, they still remain contentious in Australia.

“I have never understood it. I find it fascinating that water is so scary.”

Professor Gamble agrees.

“We’re talking about water, just water – not epidurals, not heavy duty drugs,” she says.

“Thank goodness hospitals are moving towards increasing their remodelling of their maternity suites to include tubs but quite frankly it’s a lot of fuss for something as simple as warm water.”

Professor Gamble says water births are common practice at planned home births, and are used during labour or active birth.

“Some women want to get in and get out for birth, some want to labour in the water and some hop in just for the birth – anything goes.”

Perhaps, most importantly, Professor Dahlen says water births are not about the baby.

“That’s what people get wrong,” she says.

“It’s about the mother and if you have a really happy and relaxed and stress free mother you actually have a baby that’s advantaged – they are born and very placid.

“They don’t often cry – they come up and blink.

“They are breathing fine. They come up all lovely and warm and then go to their mother’s chest.

“I really love water births.”


A way to make labour shorter, easier and more comfortable

“Introducing a deep pool of water to the birthing room is a way to make your labour shorter, easier and more comfortable.

It increases your sense of privacy and helps to make your baby’s entry to the world gentle and free from trauma, whether the birth occurs in or beside the pool”

Janet Balaskas – “Water Birth”

During your labour relaxing in a deep pool of warm water can be a wonderful aid.

It’s using a pool mainly for this reason – even if you are not planning a water birth.

A birth pool may help you to manage pain effectively in labour and considerably reduce your need for medical pain relief.

Studies have shown that fewer epidurals are needed when women use a water birth pool.

You are supported by the buoyancy of the water.

This allows you to relax easily and more deeply.

This helps you to cope with contractions and rest more comfortably in between them.

By saving energy you’re less likely to become tired or exhausted.

It’s easier for you to use upright or squatting positions in water than it is on land and to move freely from one position to another as you explore what works best for you.

You are likely to have an increased feeling of privacy and security in the pool.

If you enter the pool at the right time (5-6cms dilation) you can expect a boost in the secretion of the hormone oxytocin.

This will stimulate strong contractions.

The ‘oxytocin wave” when you enter the pool in strong labour lasts for approximately two hours.

You are likely to dilate rapidly during this time.

You may choose to have your baby in water

Welcoming your baby in water can be a joyous and wonderful experience.

However, you may choose to leave the pool for the birth itself.

It’s best for you to keep an open mind, rather than to have a fixed plan to give birth in water, even though the idea may be very appealing.

If you progress well in the pool during labour, or if your birth happens soon after you enter the water, you may wish to stay in the pool for the birth.

Your baby can be born under water without increased risk provided there is good midwifery care and there are no known complications.

Your baby is gently brought to the surface before taking his first breath.


The history of Water Birth

There have been accounts of women labouring and giving birth in water mostly amongst peoples living near a source of shallow warm water such as the South Pacific islanders.

In most traditional societies the rituals and practices of childbirth have, until recent times, been a matter of secrecy and handed down through generations of women.

There are oral traditions of similar practices among the Maori, the Indians of Central America, and the Ancient Greeks and Egyptians.

In 1805, the first account the use of water in Europe was documented.

A French woman, who had laboured for two days before being encouraged to get into a warm bath by her enlightened doctor then progressed to give birth to a healthy baby within an hour.

Sadly, for millions of women at the time there was no recognition of the importance of this event.

Aside from this, there are no accounts of a tradition of childbirth in water in Europe or other northerly regions.

The reason for this may be a simple matter of climate and plumbing.

Only with the widespread availability of artificially heated water and portable and installed birthing pools in comparatively recent times, has giving birth in water become a real option for women anywhere in the world.

Waterbirth was pioneered in the 1960’s by the Russian researcher Igor Tjarkovsky.

Using a large aquarium he installed a glass tank in his own home in Moscow in which many mothers gave birth .

Stunning photographs of these extraordinary births were published in the west and inspired the first water births.

For today’s generation of mothers, the key figure in the use of water for labour and birth is the French obstetrician Michel Odent.

In 1977 Odent installed a pool in the hospital at Pithiviers , not with the idea of promoting birth in water, but primarily as an additional option for pain relief and rest during long or difficult labours.

He has said ‘the reason for the birthing pool is not to have the baby born in water but to facilitate the birth process and to reduce the need for drugs and other interventions.’

Odent published his findings in the Lancet and his recommendations in this article provided the basis for the first midwifery guidelines for waterbirths.

Odent, M.  Birth under water.  The Lancet. December 24/31, 1983. pp 1476-1477

Inspired by news of what was happening in Moscow and France, the earliest waterbirths in the West took place at home in pools that were often improvised by the couples themselves and attended by independent midwives.

The parents created birthing pools using any large waterproof container they could find – including refuse skips, cattle troughs, inflatable paddling pools or garden ponds lined with a plastic sheet.

This happened simultaneously in several parts of the world and began to cause ripples in the world of obstetrics.

When reports and images of the first waterbirths were published, the world looked on in amazement.

The women who chose this way of birthing and their attendants were variously regarded as crazy, deluded, foolhardy or inspired.

The medical establishment rallied to condemn or at least call the practice into question, citing theoretical risks of infection and fears of the baby drowning.

Such fears have been largely appeased by the work of Dr Paul Johnson, neonatal physiologist at the John Radcliffe Hospital, Oxford.

His research on the mechanisms that trigger breathing in the newborn provided scientific confirmation of the safety of birth underwater at body temperature for babies who are not at risk.

He described how the baby is protected against the possibility of breathing while underwater in the few seconds between emerging from the birth canal and being lifted out of the water.

This response is known as the ‘dive reflex’.

Johnson, P.  Birth under water – to breathe or not to breathe. British Journal of Obstetrics and Gynaecology, vol 103, no 3, March 1996. pp 202-208

In 1999 Ruth E. Gilbert and Pat A. Tookey of the Institute of Child Health, London, published a hugely important study in the BMJ that effectively provided the ‘green light’ for labour and delivery in water.

It was a study of the outcomes for all babies born in water in the UK in a two-year period between 1994 and 1996.

A total of 4,032 waterbirths were included in the study (about 0.6 per cent of all deliveries).

All 1500 consultant paediatricians in the British Isles were asked if they knew of cases of perinatal death or admission to special care within 48 hours of labour or delivery in water.

The study showed that there was no increased risk to health for babies born in water as compared with babies born to other low-risk women on land.

Since then a burgeoning of interest in the use of water in labour in the UK has led to the development of a unique concentration of knowledge and expertise within the mainstream maternity system.

Positive encouragement to the use of water in labour and childbirth has come from the Royal College of Midwives, which recommends that midwives should develop the knowledge and skills to assist women at a waterbirth .

Water labour and birth is an option which is limited to ‘low risk’ women having an uncomplicated birth following a healthy pregnancy.

In the UK the issues of safe practice have been addressed by the health authorities, Royal College of Midwives, midwifery supervisors and one or two obstetricians.

A significant body of research studies and several important surveys have been undertaken.

Development has been more carefully and diligently monitored than many of the obstetric procedures that are widely used.

Against this backdrop, more of the managers of maternity services in the UK are increasingly being persuaded that the option of using water in labour and for birth should be available to all women.

The extent of the use of birth pools in the UK increased.

Pools are now used in hospitals as well as independent birth centres, some of which specialize in waterbirths, and in the community at home births with both independent and NHS midwives.

The Edgware Birth Centre in North London is an example of a new type of forward-thinking NHS birth unit.

Typically 70 per cent of women who give birth at the centre use water during labour and 50 per cent give birth in water.

Since it’s inception outcomes show far fewer interventions than for low-risk births at a conventional hospital birth unit.

This is a model of care which would transform our maternity services if widely adopted.

In October 2000 the UK’s Royal College of Midwives estimated that 50 per cent of maternity units provided facilities for labour or birth in water.

The usage of pool varied between 15 and 60 per cent, which may be an indicator of the significance of the role of the midwife in supporting and encouraging women to consider the use of water.

Since then the number of UK hospitals and birth centres with installed pools has risen to closer to 60 per cent.

However, that does not necessarily mean that the pools are being fully or enthusiastically utilized or that the pool is always available.

It’s not uncommon for women to be discouraged from using them or to be told that trained midwives are not available.

Sometimes stringent protocols around the use of a pool can limit it’s usefulness and frustrate both mothers and midwives.

Women who want to use a pool are often also told that this may not be possible if the pool is already in use.

It’s time for such problems to be addressed and for all women to have the possibility of using a birth pool wherever they choose to give birth.

Water birth is one of the greatest innovations in childbirth of our times and can no longer be regarded as a passing fad.

The use of epidurals today has reached epidemic proportions and contributes significantly to the high caesarean and intervention rate and is also very costly, requiring a high level of expert attendance.

The simple expedient of a pool of warm water is by now a proven way to confine the use of epidurals to those women who really need them and improve safety and quality of the birth experience.



Nothing helps mothers cope with pain in labour more effectively

Water birth pools play a vital role in helping mothers experience physiological labour and natural birth.

Nothing helps mothers cope with pain more effectively.

If mothers are not going be reliant on analgesia for pain relief they need other options.

Mothers who enter a pool of warm water in established labour find that they are better able to cope with the pain.

Immersion in warm water has been unequivocally proven to be of great benefit both physiologically and psychologically.

Women have a greater sense of fulfillment and accomplishment and babies experience a non-traumatic birth.

Aside from the obvious benefits to mothers and babies, midwives experience greater job satisfaction and hospitals save money & optimise resources.

Nearly a third of women benefited from the use of a water birth pool in the UK in 2014 (National Maternity Survey 2014).

With up to 60% of mothers open to natural birth now is the time to consider making this safe, effective, low cost option more widely available.

On land mothers contend with the force of gravity which limits movement as labour progresses and they tire.

Many women do not have the fitness to maintain upright postures for lengths of time. (Gupta JK, Hofmeyr GJ, Smyth R 2007).

Mothers who are overweight or obese are often unable to cope with the physical demands.

The transition from the land to water helps revive & energise mothers giving them a new lease on life and sense of purpose.

The buoyancy of water supports the mother reducing her relative weight by approx. 33% (Archimedes Principle).

This allows her to move in ways not possible on land.

To explore and benefit from the postures natural to labour & birth .

The calming, relaxing effect of the warm water promotes the flow of oxytocin.

This powerful hormone plays a huge role in childbirth.

It causes the uterus to contract and triggers the ‘fetal ejection reflex’.

Immersion in water has a beneficial physiological effect on hormone secretion, including oxytocin surges which can advance dilation and stimulate contractions (Odent 2014).

Setting up a water birth facility

Hospitals in the United Kingdom have been evolving clinical guidelines for the use of water for labour and birth for over 3o years.

The protocols for operational policy that they’ve developed are widely regarded as the benchmark standard internationally.

Below a collection of guidelines and publications to help you create a water birth facility.

Clinical Guidelines – Royal Cornwall Hospital

Clinical Guidelines – Royal Worcester Hospital

Guideline for the Management of Women Requesting Immersion in Water  – Norfolk and Norwich University Hospitals

Operational Policy and Clinical Guidelines – Abbey Birth Centre

Birthspace: An evidence-based guide to birth environment design – Queensland Centre for Mothers and Babies

Use of water for labour and birth – Hywel DDA Local health Board

Guidelines for use of pool during labour and delivery – East Cheshire NHS Trust

Guiding principles for midwifery care during normal labour – Barking, Havering and Redbridge NHS Trust

Waterbirth care during labour for low risk women – Sandwell and West Birmingham Hospitals

Waterbirth Guidelines – Midwifery Led Unit, Wirral Hospital

Choosing a Water Birth – East and North Hertfordshire

Birthing pool use of labour and delivery – Wansbeck General Hospital

Water birth and use of water in labour guideline – Buckinghamshire Healthcare

Water for labour and birth guideline – Northern health and Social Care Trust

Immersion in water during labour and birth – NHS Forth Valley

Intrapartum care midwifery led unit – Wirral Women & Children’s Hospital

Guidelines for water birth within the hospital and at home – Dartford & Gravesham NHS

Disinfection and Sterilisation policy (infection control) – Basingstoke and North Hampshire NHS FT

The buoyancy of water helps mothers benefit from upright positions

Studies have shown that upright labour positions are associated with a reduced second stage, fewer episiotomies or instrumental intervention in contrast to mothers labouring on their backs.

Many women also feel empowered in an upright position, and experience a sense of control over their labour.

On land women need to contend with the force of gravity that limits their ability to assume upright postures especially as labour progresses and they feel tired.

Many women do not have the fitness or stamina to maintain upright postures for lengths of time.

The transition from the land to water helps revive and energise the mother giving her a new lease on life and sense of purpose.

The buoyancy of water supports the mother reducing her relative weight by approx. 33% (Archimedes Principle) allowing her to easily explore the full range of beneficial upright positions in comfort and move in ways that were not possible on land.

The space, depth and design features of Active Birth Pools allow women to move freely to find and be supported in the upright positions that are most comfortable and beneficial for a physiological labour to unfold.


Michel Odent – the birthing pool test

This article first appeared in Midwifery Today, Issue 115, Autumn 2015.

There are many reasons to avoid last-minute cesarean sections that are decided at a phase of real emergency.

They are usually preceded by signs of fetal distress and they are often performed in poor technical conditions.

Furthermore, they are associated with negative long-term outcomes.

For example, according to an American study, women with a full-term second stage cesarean have a spectacular increased rate of subsequent premature births (13.5%) compared to a first-stage cesarean (2.3%) and to the overall national rate (7–8%) (Levine et al. 2014).

There are also serious reasons to avoid prolonged pharmacological assistance during labor, since the probable long-term effects of its different components (particularly drips of synthetic oxytocin) have never been evaluated through valuable scientific studies.

When a woman enters the pool in hard labor, there is an immediate pain relief, and therefore an immediate reduction in the levels of stress hormones.

Since stress hormones and oxytocin are antagonistic, the main short-term response is usually a peak of oxytocin and therefore a spectacular progress in the dilation.

We must add reasons to avoid, when it is possible, prelabor cesareans.

Apart from impaired lung maturation, it appears that the state of stress deprivation associated with “birth without labor” has a great variety of effects on the child, such as a lack of maturation of its olfactory sense (Varendi, Porter and Winberg 2002), which is a guide towards the nipple as early as the hour following birth (Odent 1977; Odent 1978).

Low levels of specific informational substances in the blood of stress-deprived neonates suggest effects on metabolic pathways and development of certain brain structures (Hermansson, Hoppu and Isolauri 2014; Simon-Areces et al. 2012).

It appears also that the milk microbiome and the gut flora of infants are disturbed in a specific way after birth by prelabor cesareans (Azad et al. 2013; Dogra et al. 2015), which is the mode of medicalized birth that disturbs breastfeeding more than all others (Prior et al. 2012; Zanardo et al. 2012).

Unexpectedly, it has been revealed recently that the risk of placenta previa in subsequent pregnancies is statistically significant only if the cesarean has been performed before the labor starts (Downes et al. 2015).

Finally, we are reaching a phase in the history of midwifery and obstetrical practices when an in-labor non-emergency cesarean appears in many cases as the best alternative to drugless childbirth.

In such a context, we understand the need for a new generation of tests in order to decide early enough during labor that the vaginal route is acceptable, without waiting for the phase of real emergency (Odent 2004).

The Basis for the Birthing Pool Test

The birthing pool test is the typical example of a tool adapted to futuristic strategies. It is based on a simple fact.

When a woman in hard labor enters the birthing pool and gets immersed in water at the temperature of the body, a spectacular progress in the dilation is supposed to occur within an hour or two.

If the already well-advanced dilation remains stable in spite of water immersion, privacy (no camera!) and dim light, one can conclude that there is a major obstacle. There is no reason for procrastinations. It is wiser to perform right away an in-labor non-emergency cesarean.

In the early 1980s, I had already mentioned in a mainstream medical journal (Odent 1983) the reason why we originally introduced the concept of birthing pools in the context of a French state hospital.

I had also described the most typical scenario: “We tend to reserve the pool for women who are experiencing especially painful contractions (lumbar pain, in particular), and where the dilatation of the cervix is not progressing beyond about 5 cm. In these circumstances, there is commonly a strong demand for drugs.

In most cases, the cervix becomes fully dilated within 1 or 2 hours of immersion…” At that time, I could only refer to most cases.

Afterwards, I analyzed the outcomes in the rare cases when the dilation had not progressed after an hour or two in the bath. I realized that finally a cesarean had always been necessary, more often than not after long and difficult first and second stages.

This is how I started to tacitly take into account what I had not yet called the birthing pool test.

More recently it happened that I mentioned the birthing pool test during information sessions for doulas.

This is how I learned from a series of reports about births in London hospitals.

It is obvious that many long and difficult labors with the usual range of drugs preceding an emergency cesarean would be avoided if the birthing pool test had been interpreted.

One of these anecdotes is particularly significant.

A woman in hard labor arrived in a maternity unit with her doula while the dilation of the cervix was already well advanced.

Soon after, she entered the birthing pool.

More than an hour later, the dilation had not progressed.

The doula, who was aware of the birthing pool test, was adamant that this woman could not safely give birth by the vaginal route.

A senior doctor was eventually called and diagnosed a brow presentation.

A brow presentation is difficult to diagnose in early labor and is incompatible with the vaginal route. In this case, the doula knew that a cesarean would be necessary, although she could not explain why.

The birthing pool test implies that an internal exam has been performed just before immersion so that, if necessary, a comparison will become possible after an hour or two.

This is an important practical detail, because midwives who are familiar with undisturbed and unguided births in silence, semi-darkness and privacy usually can follow the progress of labor with other criteria than a repeated evaluation of the dilation of the cervix.

Today, we can offer a physiological scenario explaining why immersion in warm water (set to the temperature of the body) makes the contractions more effective during a limited period of time.

When a woman enters the pool in hard labor, there is an immediate pain relief, and therefore an immediate reduction in the levels of stress hormones.

Since stress hormones and oxytocin are antagonistic, the main short-term response is usually a peak of oxytocin and therefore a spectacular progress in the dilation.

After that, there is a long-term complex response, which is a redistribution of blood volume.

This is the standard response to any sort of water immersion.

There is more blood in the chest (Norsk and Epstein 1988).

When the chest blood volume is increased, certain specialized cells in the atria release a peptide commonly called ANP (atrial natriuretic peptide) that interferes with the activity of the posterior pituitary gland (Gutkowska, Antunes-Rodrigues and McCann 1997).

We can all observe the effects of a reduced activity of our posterior pituitary gland after being in a bath for a while: we pass more urine.

This means that the release of vasopressin—a water retention hormone—is reduced.

In fact, the chain of events is not yet completely clarified (Mukaddam-Daher et al. 2002).

We have recently learned that oxytocin—the love hormone—has receptors in the heart (!) and that it is a regulator of ANP (Gutkowska et al. 1997).

In practice, we need to remember that the immediate peak of oxytocin following immersion in warm water will induce a feedback mechanism and eventually the uterine contractions will become less effective after an hour or two.


  • Azad, MB, et al. 2013. “Gut Microbiota of Healthy Canadian Infants: Profiles by Mode of Delivery and Infant Diet at 4 Months.” CMAJ 185 (5): 385–94.
  • Dogra, S, et al. 2015. “Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Subsequent Adiposity.” MBio 6 (1): e02419–14.
  • Downes, KL, et al. 2015. “Previous Prelabor or Intrapartum Cesarean Delivery and Risk of Placenta Previa.” Am J Obstet Gynecol 212 (5): 669 e1–6.
  • Gutkowska, J, J Antunes-Rodrigues and S McCann. 1997. “Atrial Natriuretic Peptide in Brain and Pituitary Gland.” Physiol Rev 77 (2): 465–515.
  • Gutkowska, J, et al. 1997. “Oxytocin Releases Atrial Natriuretic Peptide by Combining with Oxytocin Receptors in the Heart.” Proc Natl Acad Sci USA 94 (21): 11,704–09.
  • Hermansson, H, U Hoppu and E Isolauri. 2014. “Elective Caesarean Section Is Associated with Low Adiponectin Levels in Cord Blood.” Neonatology 105 (3): 172–74.
  • Levine, LD, et al. 2014. “Does Stage of Labor at Time of Cesarean Affect Risk of Subsequent Preterm Birth?” Am J Obstet Gynecol 212 (3): 360 e1–7.
  • Mukaddam-Daher, S, et al. 2002. “Regulation of Cardiac Oxytocin System and Natriuretic Peptide during Rat Gestation and Postpartum.” J Endocrinol 175 (1): 211–16.
  • Norsk, P, and M Epstein. 1985. “Effects of Water Immersion on Arginine Vasopressin Release in Humans.” J Appl Physiol 64 (1): 1–10.
  • Odent, Michel. 1977. “The Early Expression of the Rooting Reflex.” In Proceedings of the 5th International Congress of Psychosomatic Obstetrics and Gynaecology, Rome 1977. 1117–19. London: Academic Press.
  • ———. 1978. “L’expression précoce du réflexe de fouissement.” In Les cahiers du nouveau-né, vol. 1–2, edited by E Herbinet. 169–85. Paris: Stock.
  • ———. 1983. “Birth Under Water.” Lancet 2 (8365–66): 1476–77.
  • ———. 2004. The Caesarean. London: Free Association Books.
  • Prior, E, et al. 2012. “Breastfeeding after Cesarean Delivery: A Systematic Review and Meta-analysis of World Literature.” Am J Clin Nutr 95 (5): 1113–35.
  • Simon-Areces, J, et al. 2012. “UCP2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior.” PLoS ONE 7 (8): e42911.
  • Varendi, H, RH Porter and J Winberg. 2002. “The Effect of Labor on Olfactory Exposure Learning within the First Postnatal Hour.” Behav Neurosci 116 (2): 206–11.
  • Zanardo, V, et al. 2012. “Impaired Lactation Performance Following Elective Delivery at Term: Role of Maternal Levels of Cortisol and Prolactin.” J Matern Fetal Neonatal Med 25 (9): 1595–98.


How a simple pool of water revolutionised childbirth – Michel Odent

The birth of the water baby -…

In 1977, a state hospital near Paris began quietly changing the way women gave birth.

Obstetrician Dr Michel Odent believed that childbirth had become too medicalised and he wanted a more natural approach.

So he introduced a pool to ease the pain of labour and eventually some babies were even born in the pool.

Witness speaks to Dr Odent about the innovation that has become a revolution using the power of water.

Click here to view the video.

On a personal note, I’d like to thank Michel for inspiring me to develop Active Birth Pools.

As he said:

“When asked about the history of birthing pools in hospitals, I mention two key events:

1) In the 1970s when I bought a deep inflatable blue paddling pool and found a convenient space in the maternity unit to install it.

2) The day when Keith Brainin realised that special bath tubs might be designed and commercialized to meet the needs of labouring women.”

Using Water During Labor and Birth 

Originally published by Jessica Vogtman: November 27, 2016
Humans have an integral relationship with the element of water.
It runs through our veins, we are born of it, and it is necessary for our survival.
We are drawn to it for escape, adventure, release, and cleansing.
As a woman is preparing to give birth, water is a means of release from the weight of her growing belly, and the means to ease her aching muscles.

Water is a great coping tool in labor, whether through a shower or tub. (For the sake of this paper we will only be mentioning the use of a tub.)

The use of water in labor can aide in pain management by increasing relaxation, decreasing strain on muscles, and creating freedom of movement.

The mother’s ability to relax her muscles during labor can affect the length of labor and the intensity of contractions.

The more a mother fights and tenses her muscles the worse contractions may feel.
Especially in active labor, the mother may need as many coping strategies as possible.
The birthing tub offers a great respite, and a simple way to relax.

Version 2

The birthing tub is often called, “The midwife’s epidural”, for its effectiveness (Drichta, Owen p. 257).

The warmth of the water helps to ease the pain felt from contractions, relaxing muscles of the pelvic floor and back, and creates a mental space that creates privacy (Drichta p. 258).

It is recommended to maintain water temperature at 96-98 degrees.

Using higher temperatures could cause increased blood pressure, dehydration and lethargy (Drichta p. 258).
The bath is also deeply engrained as a place of mental release in daily routines.

Our bathtubs are typically places of retreat to relax, and the mental association during labor holds true.

Labor is a physically demanding process.

From hours of walking, lunging, squatting, intense contractions, and the possibility of little sleep can make for a grueling marathon on the mother’s muscles.

The warmth of the tub eases both the pain of the contractions and the work of her remaining muscles (Drichta p. 257).

Being in a large tub that covers her belly, the mother is buoyant and freed from the gravity of dry land.

Her pelvic muscles are relaxed and her cervix will continue to dilate, often with more ease as she relaxes.

A mother that is able to relax and mentally release her tension, will have an easier time laboring than a mother that is fighting each contraction.

Being weightless allows the mom to assume positions that could be too taxing on land, such as deep squats using the side of the pool, that will help baby to descend and turn.

She’s able to easily move from one position to the next in response to her labor, while remaining warm and relaxed.

The ease of movement allows the mother to find her own rhythm and coping responses that she would not have had if she was limited to a bed.


Her ability to move through labor gives the mother more control and autonomy during the birth.

She’s able to push in the position that suits her, catch her own baby, and bring baby to chest without outside help or others manipulating her body. She has full confidence and control.

Relaxation, decreased strain on muscles and freedom of movement are gained for the birthing mother with the use of water during labor. The three work together as a pain management strategy, addressing both mental and physical tension that could hinder a birth.

The birthing tub is used at its greatest advantage during late stage active labor through transition.

It is recommended that for every hour spent in the tub, the mother spends at least thirty minutes out of the tub.

This is to ensure that contractions do not slow down, as can sometimes happen.

Often contractions may just feel less intense, but are still actively working.
According to Water BirthInternational, “Getting back in the water after thirty minutes will reactivate the chemical and hormonal process, including a sudden and often marked increase in oxytocin.” (Harper p. 2)
As with other labors, hydration is of the utmost importance. Keep a drink with a straw nearby so the mother can drink at will.

The birth can be completed in the water as well, depending on location (some hospitals only allow laboring in the tub) and as long as the labor is not having any complications (ex:meconium, shoulder dystocia).

Works Cited

Drichta, Jane E., CPM and Owen, Jodilyn, CPM. The Essential Homebirth Guide for Families Planning or Considering Birthing at Home. 2003. Simon and Schuster.

Harper, Barbara. “Guidelines for Safe Waterbirth.”Waterbirth International. p. 2

Jessica Vogtman has lived in Maryland since 2003, and has been a Carroll County resident since 2006. She graduated with a bachelors degree in Biology and Chemistry from Notre Dame of Maryland University. Upon graduation, she worked as a zookeeper at the Maryland Zoo in Baltimore, where she became immersed in natural living. Jessica developed her passion for birth during her first pregnancy in 2012, and spent the following years educating herself on natural birth and birthing techniques. She is currently certifying as a doula with Birth Arts International.

Water VBAC: exploring a new frontier for women’s autonomy

McKenna JA; Symon AG, (2014). Midwifery , vol 30, no 1, January 2014, e20-5.

BACKGROUND: although Vaginal Birth After Caesarean section (VBAC) has been promoted successfully as one means of reducing the caesarean section rate, the practice of VBAC using water immersion (Water VBAC) is restricted.

Very little valid, reliable research evidence is available on this birth method, although initial small-scale audits indicate that Water VBAC has no adverse effect on maternal and neonatal outcomes.

METHOD: in-depth semi-structured interviews were carried out with a purposive sample of eight women who had undergone Water VBAC in one midwife-led unit.

The interviews aimed to explore their reasons for requesting this birthing method, and their experience of the process. An interpretative phenomenological analytical approach was adopted.

FINDINGS: the women pursued Water VBAC for two main reasons: in order to prevent a repeat of the obstetric events that previously led to a caesarean section, and to counteract their previous negative birth experiences.

The women reported improved physical and psychological outcomes from their Water VBAC experience when compared with their previous experience of caesarean section.

Three main themes emerged: ‘minimising’, ‘maximising’ and ‘managing’. Water VBAC entailed an attempt to minimise the medicalisation of the women’s childbirth experience.

This was achieved by limiting medical staff input in favour of midwife-led care, which was believed to minimise negative physical and psychological experiences.

Correspondingly, Water VBAC was perceived as maximising physical and psychological benefits, and as a means of allowing women to obtain choice and assert control over their labour and birth.

The women planning a Water VBAC believed they had to manage the potential risks associated with Water VBAC, as well as manage the expectations and behaviour of friends, family and the health care professionals involved in their care.

CONCLUSIONS: for the women participating in this research, actively pursuing Water VBAC constituted a means of asserting their autonomy over the childbirth process.

The value accorded to being able to exercise choice and control over their childbearing experience was high.

These women’s accounts indicated that information-giving and shared decision-making require improvement, and that inconsistencies in the attitudes of health care professionals need to be addressed.


Labour and birth guidelines – West Middlesex University Hospital

February 2015:

By Chantelle Winstanley (Consultant Midwife)

Submitted by Alyson Brown
Natural Birth Centre Lead Midwife
Queen Mary Maternity Unit
West Middlesex University Hospital


Benefits and rationale for use
Criteria for use
Special circumstances
Care during first stage of labour
Care during second stage
Care during third stage
Emergency procedures in the pool
Cleaning the pool

Related Guidelines

Midwifery-led care
Prelabour SROM
Group B streptococcus
Fetal monitoring in labour

Ratified by Maternity Services Forum – November 2013

Changes since last update – Infectious Diseases p4

Review Date – November 2016

Labour and Birth in Water

When utilising this guideline to support women who may wish to use water for labour and / or birth, a full discussion must take place between the women and her caregiver to ensure the benefits and potential challenges concerning the use of water have been highlighted.

Where possible, informed decision making should allow for a distinction to be made between ‘Hydrotherapy,’ that is, the use of immersion in the water to ease the discomfort of labour and ‘Waterbirth;’ the term used to indicate that the baby has been born directly into warm water.

Following discussion during the antenatal period or upon admission in labour, it is good clinical practice to document a woman’s preferred option in relation to hydrotherapy for labour and waterbirth. Midwives can refer to pages 14-16 of ‘Birth and Beyond’ leaflet (2012)’ to aid a discussion.


Evidence which supports a positive experience for women who choose to labour and / or birth in the water is well documented.

Maternal satisfaction is increased by feeling more relaxed in the water, feeling more in control and more involved in decision-making (Richmond 2003; Hall and Holloway, 1998.)

Hydrotherapy may offer benefits to women owing to feelings of weightlessness, ease of mobility due to water buoyancy, warmth, deep relaxation and the principle of facilitating and accentuating normal childbirth (Odent, 1998; Garland, 2011.) Odent (1998) suggests that the deep relaxation obtained from warm water promotes rapid cervical dilation.

In addition, there is robust evidence to prove that water is a useful analgesic in labour, resulting in less use of epidural and spinal anaesthesia following immersion in the water (Cluett and Burns, 2009.)

There is some evidence to suggest that women who choose a waterbirth sustain reduced perineal trauma, owing to the counter-pressure of the water encouraging steady maternal pushing and a slow delivery of the baby’s head (Garland, 2011.)

A joint statement by the RCOG / RCM, published in 2006, supports the principle of hydrotherapy for healthy women with uncomplicated pregnancies (RCOG / RCM, 2006.) Whilst they state that the evidence for birthing in water is less clear, Cluett and Burns (2009) found that, in comparison to land births, there was no significant difference in the type of birth, Apgar scores (at 5 minutes), admission to NNU and neonatal infection.

Likewise, there is no evidence to support the notion that the use of water in labour and birth increases perinatal morbidity and mortality (Alderice et al 1995; Gilbert and Tookey, 1999.)


  • Uncomplicated singleton pregnancy; long lie and cephalic presentation
  • 37 – 42 weeks gestation
  • Spontaneous onset of labour; regular, painful contractions
  • Normal fetal heart rate
  • Maternal observations remain within normal limits
  • Absence of bleeding greater than a blood-stained show
  • Absence of meconium
  • Ruptured membranes for <48 hours* (see Prelabour spontaneous rupture of membranes and Group B streptococcus).*Women with ruptured membranes >24 hours, in an otherwise uncomplicated pregnancy at 37-42 weeks, who make an informed decision for expectant management of labour should not be excluded from hydrotherapy / waterbirth providing that SROM is within 48 hours of the onset of established labour.The liquor should be clear, with no signs of infection or odour with an absence of meconium, known GBS or maternal pyrexia. Vigilant maternal and fetal observation is paramount in these circumstances. Should any concerns arise, the midwife should encourage the woman to leave the water immediately. Following birth, the newborn should be closely observed for a minimum of 12 hours in cases of ruptured membranes >24 hours.
  • Absence of narcotic analgesia: It is not advisable for women who have received opiate analgesics to enter the pool. Women should be clear of sedation symptoms before using water in labour– a recommended time frame is 2-4 hours following the administration of either pethidine or Meptid; midwives should make an assessment of sedation levels before the woman enters the pool.
  • Women with known GBS in current pregnancy: Women with known GBS are not excluded from the use of water, providing intrapartum antibiotics have been offered in established labour. Care should be taken to ensure that infection control principles are adhered to i.e waterproof dressing is applied to the cannula.Women with known GBS and pre-labour ruptured of the membranes (PROM) will be offered immediate IOL (therefore excluded from the use of water.) If women decline IOL and choose expectant management <24 hours there is no current evidence available to suggest that water in labour increase the risk of neonatal / maternal infection in these cases. A full discussion should take place with the woman regarding the risks of GBS / PROM, including liaison with the Obstetric and Paediatric teams.

Special Circumstances: women who fall outside of the criteria for the use of water in labour and birth:

  • A woman should be given the opportunity to discuss her requests with the Consultant Midwife and/or Consultant Obstetrician in the antenatal period. SoMs are also available to support discussions on maternal choice.
  • Women who request a waterbirth but fall outside of the criteria should have a clear plan made and documented based on informed choice, preferably before labour commences. If the plan changes during labour, and midwives are uncertain if the use of water is an appropriate option, they should contact the Supervisor of Midwives (SoM) on call or discuss with the labour ward co-ordinator on duty.
  • All discussions should be thoroughly documented concerning the benefits and risks of using the pool where risk factors are present.
  • Clinical staff should respect that women have a right and choice to opt for a water birth when high risk factors are present.
  • For higher-risk cases where continuous electronic fetal monitoring (cEFM) is recommended, the use of telemetry should be encouraged and Room 6 on labour ward should be prioritised (where possible) to reflect a woman’s request.

Infectious Diseases and Waterbirth

There is no evidence on the safety of water for women with known viral infections. Trust infectious diseases consultants have advised that any woman with HIV and a plan for a vaginal birth will have an undetectable viral load and therefore may use the pool.

Women who are chronic carriers of hepatitis B i.e. ‘e’ antigen negative may also use the pool but those with hepatitis C who are PCR positive i.e. detectable viraemia should not. There will be evidence of discussion and a plan in the notes of women with viral infections.


  • Prepare a resuscitation area for the baby – ensure a flat surface; check equipment and have x2 cord clamps prepared in the rare event of cord snapping
  • Prepare an area for the mother to get out of the pool safely in the event of an emergency
  • Ensure that the partner understands they are responsible for filling / empting the pool. Record the temperature as in a hospital pool birth
  • Ensure that there is sufficient mobile phone signal to call 999 in the event of an emergency


  • Midwives are responsible for their own professional development; only midwives competent in the principles of waterbirth are to care for women requesting hydrotherapy in labour. Support and training is available in the use of water for labour and birth (RCOG / RCM 2006); midwives should speak to the Consultant Midwife or Practice Development team should they require training in this area.
  • When caring for a woman using a birthing pool, back care is important. Minimise bending where appropriate.
  • If possible, encourage the woman to lift her abdomen out of the water to enable fetal heart auscultation.
  • Use gauntlet gloves in the second stage; avoid becoming excessively wet


  • There is little evidence available for the use of arbitrary points during labour to dictate when pools should or should not be used (RCM, 2012.) Women are recommended to enter the pool when contractions are strong, regular and painful.
  • Prepare a safe place to exit the pool, if required, in the event of an emergency.
  • Check neonatal resuscitation equipment.
  • Comfortable room temperature (21-28o C)
  • Record the water temperature and maternal temperature hourly. RCOG/RCM (2006) suggests that it may be of more benefit to allow women to regulate the pool temperature to their own comfort in the first stage of labour. As a guide, the water temperature can be maintained below <37.5 o C (Gordon, 1996; Garland; 2011)
  • Maternal observations (temp / pulse) and progress should be recorded hourly (with the exception of maternal BP)
  • The fetal heart should be auscultated with an underwater sonicaid and recorded as for intermittent auscultation on land (see Fetal monitoring in labour)
    • Water should be deep enough to facilitate movement and comfort, but not so deep that there is a risk of the cord snapping when the baby is brought to the surface. Therefore water should be at the level of the woman’s nipples.
    • Aromatherapy oils should not be used in the water.
    • Whilst in the pool, the woman may use Entonox for pain relief.
    • Exiting and re-entering the pool should be determined by the woman as she wishes (RCOG/RCM, 2006.) As a guide, encourage the woman to exit the pool every 2 hours to empty her bladder.
    • One midwife, trained and competent in water births, to remain with the woman throughout labour.
    • Allow the woman to adopt any position she finds comfortable.
    • Encourage adequate hydration throughout
    • If delivery is not imminent within 4 hours of entering the pool, the woman should leave the pool for a period of time. She may then re-enter the pool providing her contractions regain regularity and fetal heart patterns are normal.


  • Regulation of water temperature is important in the second stage of labour – maintain water temperature at around 37.0 o C to prevent fetal initiation of respiration under water (Johnson, 1996)
  • It is a recommendation that 2 midwives be present when birth appears imminent
  • Prepare birth equipment. X2 cord clamps are recommended.
  • Careful intermittent auscultation of the fetal heart every 5 minutes for 60 seconds following a contraction.
  • The instinctive, expulsive contractions observed in the second stage may be quite different from that which midwives observe on a bed-based or land birth. Directed pushing is not normally required when a woman is submerged in the water; she will often make instinctive responses to the descending fetal head and control the speed with short pushes.
  • It is important the baby is born totally immersed in the water at the point of birth. During crowning, some women have an uncontrollable urge to lift their bottom up out of the water; this presents a risk to the infant. In this circumstance, the midwife should gently encourage the woman to re-immerse in the water by placing her hand on the woman’s lower back or thigh to guide her.
  • Birth in water is often gentle and relaxed. The infant may take up to a minute to respond. If no sign of breathing is apparent after one minute, clamp and cut the cord, call for emergency assistance, wrap the infant in a clean, dry towel and place on a flat surface and initiate neonatal resuscitation if required.A “hands off” approach is strictly necessary to avoid stimulating the baby and causing initiation of respiration under water. Feeling for the nuchal cord or exerting manual counter pressure on the emerging head is against recommendation and is potentially harmful. DO NOT attempt to clamp and cut a tight cord under water.
  • A mirror may be used to aid visualisation and assess progress of the second stage.
  • As far as possible, faecal contamination in the pool should be removed using a sieve. In the event the pool becomes heavily contaminated, it may be necessary to ask the woman to temporarily leave the pool whilst it is emptied, cleaned and re-filled.
  • Following delivery of head and shoulders, the midwife and / or woman should gently bring the baby head first to the surface. The air will stimulate respiration (Gordon, 1996; Johnson, 1996).
  • The baby’s body should be kept under water to prevent hypothermia.
  • Birth in water is often gentle and relaxed. The infant may take up to a minute to respond. If no sign of breathing is apparent after one minute, clamp and cut the cord, call for emergency assistance, wrap the infant in a clean, dry towel and place on a flat surface and initiate neonatal resuscitation if required.

Slow Progress in the second stage

If progress is slow or not apparent, consider:

  • Maternal and fetal condition and maternal behaviour – all observations within normal limits?
  • Changing maternal position for pushing, possibly leaving the pool
  • Encouragement – use of a mirror to view progress?
  • Emptying the bladder
  • Is the woman adequately hydrated?

Birth would be expected to take place within 3 hours following full dilatation for nullips and 2 hours for multips as for a dry birth.

The woman must leave the pool if there is a deviation from normal.


Physiological third stage

Women who have experienced an uncomplicated first and second stage of labour should be able to choose a physiological third stage following full discussion.

It should be left to maternal choice whether the woman exits the pool for delivery of the placenta (physiological third stage only); the risk of water embolism is entirely theoretical and there are no known cases (Wickham, 2005.)

Midwives should be aware that it is difficult to identify if a woman is having a PPH in the pool.

  • Determine the woman’s choice and ensure all is normal
  • Do not clamp and cut the cord; doing so disturbs normal physiology and may predispose to a retained placenta or PPH.
  • Keep the infant immersed in the warm water at approximately the same level as the uterus to prevent possible excessive transfusion to the baby.
  • Allow the woman to expulse the placenta sitting upright in the water: ensure the water is maintained at 37 o
  • If there is any delay or signs of excessive bleeding, assist the woman to leave the pool immediately. Initiate active management in this case.
  • If the woman wishes to leave the pool for physiological third stage, clamp and cut the cord following cessation of pulsation, pass the baby to a birth partner and assist the woman out of the pool. Keep mother and baby warm with dry towels and encourage skin-to-skin and early suckling. An upright position is recommended. Remove the clamp from the placental end of the cord and allow the blood to drain into a receiver to facilitate separation and expulsion of the placenta.
  • The placenta should be delivered by maternal effort alone.
  • The placenta should deliver spontaneously within an hour following the birth.
  • Blood loss cannot be estimated in the pool. Clots may be collected in a sieve and weighed. The midwife must make a clinical decision about the blood loss – as a general rule, if it is impossible to see the bottom of the pool due to the colour of the water, excessive blood loss may have occurred.


  • Placental check as per a land birth

Active management of the third stage

The woman should be asked to leave the pool prior to the administration of an oxytocic drug and delivery of the placenta. DO NOT attempt CCT in the water.

  • Assist the woman to leave the pool
  • 1 ampoule (10 i.u) of Syntocinon to be given IM with consent.
  • Keep mother and baby warm; lie in a suitable, safe place to facilitate delivery of the placenta.
  • Observe signs of placental separation. Apply controlled cord traction whilst guarding the uterus
  • Active management should be complete within 15-30 minutes post birth. Contact a senior doctor if the placenta has not been delivered at this point.
  • Placental check and EBL as per a land birth

Care following the birth

  • Examination of the perineum should take place out of the pool.
  • Excepting cases of profuse bleeding, suturing of perineal tears should be delayed for at least one hour following the birth to allow for water retention of the perineal tissues to dissipate.


Most emergency situations can be managed with the woman still in the pool.

Very rarely do low-risk women have to be helped from the pool in an emergency.

In all cases of emergencies in the water, prompt recognition of a deviation from the norm is paramount: summon rapid assistance on 2222 or 999 assistance in a home setting.

  1. Shoulder dystocia
  • If the fetal head fails to restitute and the body is not expelled within the next strong contraction with maternal effort, stand the mother up out of the water immediately.
  • Raise one leg up on the step of the pool (or the side of the pool if the woman is able to) If shoulders do not come with the next contraction help her promptly from the bath, lay her on a mat on the floor, summon emergency assistance 2222 immediately and start the emergency drill for shoulder dystocia.
  1. Baby requiring resuscitation
  • Clamp and cut the cord immediately and remove from the water. Call for neonatal assistance on 2222 and commence newborn life support (NLS) drill
  • If in a home setting, summon 999 assistance and utilise NLS equipment.
  1. Post partum haemorrhage (if EBL estimated >500mls)
  • Clamp and cut the cord if the placenta is still in-situ.
  • Give Syntometrine 1 ml and assist the women from the pool immediately.
  • Active management of 3rd stage
  • Summon assistance on 2222; utilise PPH trolley
  • Call 999 if in a home setting
  • Assess for transfer to Labour Ward or theatre for continuing management of postpartum haemorrhage
  • Follow drill for major obstetric haemorrhage
  1. Snapped Cord
  • Very occasionally, it has been noted that the cord may snap as the baby emerges
  • Quickly clamp and cut the cord at both ends to ensure minimal blood loss
  • Observe the infant closely for signs of distress
  • Notify a paediatrician
  • Commence NLS if required
  1. Emergency evacuation of pool in NBC or LW

Equipment required:


Number of handlers required:


  • Lead midwife to call for emergency assistance on 2222 immediately.


Stringent infection control principles should be adhered to at all times.

  • Before removing the plug, remove as much debris as possible using the sieve.
  • Open the plug to remove contaminated water.
  • Rinse the pool using the shower attachment.
  • Mix 1 litre of Chlorclean solution using strength of 1 tablet of Chlorclean to 1 litre of water
  • Using a disposable cloth and gloves use the solution to clean the pool, and the surfaces and steps around the pool.
  • Rinse with cold water to remove the Chlorclean solution.
  • Dry the pool.
  • The plug should be closed when the pool is not in use.
  • There should be no moisture at the bottom of the pool when not in use; it must be left dry to prevent bacteria forming.

Cleaning and disinfecting of equipment:

  • Using hot, soapy water, wash the pool thermometer, mirror and any other re-usable equipment that has been used in the pool.
  • Soak the equipment in the pool bucket provided for at least 30 minutes in a solution made of 1 Chlorclean tablets to 1 litres of water.
  • Rinse and dry the equipment.


  • Alderice, F, Renfrew, M and Marchant, S (1995) Labour and birth in water in England and Wales. British Medical Journal. Vol 310; pp837
  • Belbin, A. 1996 Power and choice in birthgiving: a case study British Journal of Midwifery Vol 4 No 5 pp264-267
  • Brown, L. 1998 The tide has turned: an audit of waterbirth. British Journal of Midwifery
  • Charles, C. (1998) Fetal hypothermia risk from warm water immersion. British Journal of Midwifery Vol 6 No3 pp 152-156
  • Cluett, ER and Burns, E (2009) Immersion in water in labour and birth. Cochrane database of systematic reviews. Issue 2. J Wiley and Sons: Chichester.
  • Forde, C et al 1999 Labour and delivery in the birthing pool. British Journal of Midwifery Vol 7 No 3 pp165-171
  • Gilbert, RE and Tookey, PA (1999) Perinatal mortality and morbidity among babies delivered in water; surveillance study and post survey. British Medical Journal. Vol 319 (7208) ; pp 183-187
  • Gordon, Y. 1996 Waterbirth: the safety issues in 1996 Waterbirth unplugged Books for Midwives Press pp135-142
  • Hall, SM and Holloway, IM (1998) Staying in control; women’s experience of labour in water. Midwifery. Vol 14 (1) pp 30-6
  • Johnson, P. 1996 Birth under water: to breathe or not to breathe. British Journal of Obstetrics and Gynaecology
  • McLean, M.T. 2000 Lingering concerns about waterbirth. Midwifery Today Vol 1 N0 54 p 7
  • Mills, M. S. and Stirrat, G. M. 1996 Water immersion and waterbirth. Current Obstetrics and Gynaecology
  • Odent, M. 1998 Use of water during labour: updated recommendations. MIDIRS Vol 8 No 1 pp68-69
  • Richmond, H (2003) Women’s experience of waterbirth. Practising Midwife Vol 6; pp 26-31
  • Royal College of Midwives (2012) Evidence Based Guidelines for Midwifery-led care in labour. RCM: London
  • Royal Collage of Obstetrics and Gynaecology / the Royal College of Midwives (2006) Joint statement no. 1; Immersion in water during labour and birth. RCOG: London
  • Wickham, S (2005) The birth of water embolism. The Practising Midwife. Vol 8(11) pp37


Guideline elements to be monitored:


  • Documentation of discussion of benefits and possible risks of hydrotherapy / waterbirth with woman either antenatally or on admission in labour
  • Documentated plan for monitoring of fetal / maternal well-being and water temperature throughout labour
  • Documentation and completion of proformas (if applicable) following an obstetric / paediatric emergency in the pool.
Process for monitoring
  •  Retrospective case notes audit
Group responsible for monitoring, review and development of action plan
  • Maternity Improvement Committee
Group responsible for monitoring of action plan and implementation
  • Maternity Services Forum




1. Call for emergency help

2. Support the mother’s head above water

3. DO NOT empty the pool – water helps to float the woman out of the pool

4. Locate the sling net from the adjoining sluice room

5. Prepare a bed / trolley at pool height to receive the woman – remove the head of the bed if necessary and switch off electric supply

6. Prepare towels to receive the woman to keep warm and maintain temperature

7. Minimum 5 members of staff required

8. Work as a team. Float the sling under the woman covering the full length of body, arms inside the sling

10. Work as a team.
X1 staff at the woman’s head
X2 staff on either side of the net, feet supported

11. Work as a team.
12. On the count of 3, transfer from pool to bed using the sling net, with full support

13. Start CPR if required

Laboring in water helpful for dystocia

Originally published by Laurie Barclay, MD 
Medscape Medical News. 
Jan. 26, 2004

Laboring in water can be helpful in dystocia, according to the results of a randomized controlled trial published online Jan. 26 in the British Medical Journal.

“Incomplete understanding of labour may lead to unnecessarily early intervention,” write Elizabeth R. Cluett, from the University of Southampton in the U.K., and colleagues.

“Labouring in water under midwifery care may be an option for slow progress in labour, reducing the need for obstetric intervention, and offering an alternative pain management strategy.”

To test their hypothesis that laboring in water can relieve pain and anxiety and thereby reduce the need for interventions, the authors compared outcomes for immersion in water in a birth pool during the first stage of labor with those for standard augmentation including amniotomy and intravenous oxytocin.

Subjects were 99 nulliparous women with low risk of complications and with dystocia, defined as cervical dilation rate less than 1 cm/hour in active labor. Primary outcome measures were rates of epidural analgesia and operative delivery.

Compared with women receiving standard care, those receiving water immersion had a lower rate of epidural analgesia (47% vs. 66%; relative risk [RR], 0.71; 95% confidence interval [CI], 0.49 – 1.01), number needed to treat [NNT] for benefit = 5).

Rates of operative delivery (49% vs. 50%; RR, 0.98; 95% CI, 0.65 – 1.47; NNT = 9 and overall labor length were similar in both groups.

However, significantly fewer women in the water immersion group received augmentation (71% vs. 96%; RR, 0.74; 95% CI, 0.59 – 0.88; NNT = 4) or any obstetric interventions including amniotomy, oxytocin, epidural, or operative delivery (80% vs. 98%; RR, 0.81; 95% CI, 0.67 – 0.92; NNT = 5).

Women in the water immersion group also reported significantly lower pain scores and higher satisfaction with freedom of movement than did women in the standard care group.

Although more newborns in the water group were admitted to the neonatal unit (6 vs. 0; P = .013), there was no difference between groups in Apgar score, infection rates, or umbilical cord pH.

Limitations of this study include recruitment of only 99 of 220 eligible women, increased difficulty with recruitment toward the end of the trial because of changes in standard care, and sample size too small to detect statistical differences in use of epidural analgesia.

“Delaying augmentation in association with a supportive environment (water immersion) is acceptable to women with dystocia and may reduce the need for epidural analgesia without increasing labor length or operative deliveries,” the authors write.

“A management approach that reduces rates of augmentation and associated obstetric intervention may contribute positively to maternal physiological and psychological health: oxytocin infusion is known to increase the risk of uterine hyperstimulation and fetal hypoxia, and obstetric interventions are associated with lower maternal satisfaction.”

The authors report no financial conflicts of interest. BMJ. Published online Jan. 26, 2004. Reviewed by Gary D. Vogin, MD

Position statement on the use of water immersion for labour and birth – Australian College of Midwives

Australian College of Midwives – 2013

This position statement should be read in conjunction with the Australian College of Midwives’ (ACM) position statement for midwives caring for women who make choices outside professional advice.

The ACM supports the choice of women to have the opportunity to access water immersion for labour and/or birth. The ACM identifies six key principles for the safe use of water immersion for labour and birth.

Key principles

1. Warm water immersion has been used for relieving the intensity of pain associated with labour. Warm water and buoyancy elevates the release of endorphins and facilitates relaxation.

2. There are many benefits of using immersion in water during labour, including increasing women’s feelings of control and satisfaction, less painful contractions and less need for pharmacological analgesia, shorter labour, less need for augmentation, with no known adverse effects for the woman herself.

3. Women should be provided with unbiased evidence-based information during pregnancy about their options for labour and birth, including water immersion in labour and/or birth, in order to make informed choices.

4. Informed decision-making, informed consent, and right of refusal are accepted principles in Australia. Each and every woman has the right to make informed decisions, including consent or refusal of any aspect of her care. Women must be respected in the choices that they make.

5. Midwives have a primary responsibility to ensure that their decisions, recommendations and practices are focused on the needs and safety of the woman and her baby/babies.

6. There is no evidence of significant increases in perinatal mortality or morbidity although there are some reports of rare complications. There is limited research on the safety of birth in water and most of the evidence that does exist, is restricted to healthy women with uncomplicated pregnancies.

Achieving best practice

To achieve best practice in the use of water immersion for labour and birth, it is necessary for consumers, professional colleges, education providers, health systems, Australian and State and Territory governments and policy makers to work together to:

  • foster a culture of valuing physical, emotional, social, cultural and spiritual safety in all birth environments;
  • provide women with access to water immersion in labour and/or birth;
  • provide the preparation and education required to ensure that midwives are
    competent and confident to care for women who choose water immersion in
    labour and/or birth;
  • ensure that midwives to work to their full scope of practice;
  • develop evidence-based policies that reflect best practice;
  • undertake more research on immersion in water during labour and birth. In
    particular, no trials have been identified that assess the effect of immersion in water during the third stage of labour.

Resources to guide practice

The ACM recommends the use of the following resources to guide midwives in their practice:

  • Australian College of Midwives, National Midwifery Guidelines for Consultation and Referral, 2013. Australian College of Midwives, Canberra.
  • Cluett, E.R., et al., Randomised controlled trial of labouring in water compared with standard of augmentation for management of dystocia in first stage of labour. BMJ, 2004. 328(7435): p. 314.
  • Cluett ER, B.E., Immersion in water in labour and birth. Cochrane Database of Systematic Reviews 2009, Issue 2. Art. No.: CD000111. DOI: 10.1002/14651858.CD000111. pub3. , 2009.
  • Hall, S.M., & Holloway, I. M. , Staying in control: Women’s experiences of labour in water. . Midwifery, 1998. 14: p. 30-36.
  • Miller, Y., Thompson, R., Porter, J., Prosser, S., & Fletcher, R. , Findings from the Having a Baby in Queensland Pilot Survey 2009. 2010. Queensland Centre for Mothers & Babies, The University of Queensland.
  • RCOG/Royal College of Midwives. Immersion in Water During Labour and Birth (Joint Statement No. 1), 2006. Available from: health/clinical-guidance/immersion-water-during-labour-and-birth
  • Richmond, H., Women’s experience of waterbirth. The Practising Midwife, 2003. 6(3): p. 26-31.
  • Zanetti-Daellenbach, R.A., et al., Maternal and neonatal infections and obstetrical outcome in water birth. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2007. 134(1): p. 37-43.

Date of Issue; 30th May 2013
Date of Review; 29th May 2016

Reasons to consider a water birth

Bridge to Health –  Sian Smith

When considering their birth plan, more and more women are choosing to include the use of water at some stage.

In fact, around 30% of women now plan to use this method either for birthing their baby or as a natural way to reduce some of the intense sensations (pain!) associated with labour.

Here are some of the reasons why:

Water is relaxing!

Being able to bob around in a large pool of warm water is the perfect environment to help you stay calm and relaxed, in a situation most would normally consider pretty stressful.

For many, sliding into a warm bath is the ‘go to’ choice of relaxation after a hard day, so what better way to help you through one of the most physically demanding and memorable experiences of your life?

Additionally, a calmer birth may be less stressful for your baby, as moving from an environment of warm amniotic fluid to one of warm water is a gentle way of introducing them to their new surroundings.

Water is a natural pain reliever

The relaxing effects of water help encourage the body to produce its own pain-fighting substances.

This is beneficial both for Mum and baby; for Mum staying relaxed helps stimulate her natural production of oxytocin (the’ love hormone’ that helps the uterus contract) and endorphins, the ‘feelgood’ hormones that help work as a natural pain reliever.

For baby, a happy and relaxed Mum is more likely to birth quickly with a reduced need for medical intervention.

It reduces stress and anxiety

It is not just the water that helps to relax you. With a waterbirth, often the entire surroundings are altered to create a calming ambience e.g. dimmed lights and hushed voices.

This enables you to go into your own world much more easily than if in a harshly lit room with strange people popping in and out.

Additionally, this type of relaxation helps encourage deep abdominal breathing, preventing you from becoming tense which may make contractions feel more intense.

It reduces the risk of perineal tearing

The warmth of the water helps to promote increased blood flow to the vagina and perineum (the area between the vagina and anus that is susceptible to tearing during childbirth).

This increases flexibility of the tissues and can reduce the likelihood of tearing when birthing the baby’s head.

It allows you to adopt a more ‘active’ birth position

A reason that some women choose a water birth is that it allows you to retain some control throughout the labour process –being aware of the contractions and sensations your body is experiencing, with a reduced chance of medical intervention.

Additionally, the sensation of ‘weightlessness’ that being in the water provides, enables you to move around much more freely than your body has allowed you to for a while!

You are free to adopt almost any position that feels comfortable for you.


The classic image of a labouring woman is that of her laying on her back with her legs in stirrups.

Whilst this is the case for many, it is actually a fairly difficult way to birth your baby as you have to work against gravity to push the baby’s head UP and over the lowest part of the spine – the coccyx.

The best way to counteract this is to work with gravity and adopt a more ‘active’ squatting or modified squatting position.

Being in the water allows you to stay in these positions for longer, as you can lean against the side of the birthing pool for support.

Remaining fit, healthy and active will also help you have as smooth a pregnancy as possible.

Your Osteopath can advise you on exercises that are suitable throughout pregnancy, specifically core, pelvic and lower limb strengthening exercises that will help you be able to adopt active birth positions and use the correct muscles to birth your baby as efficiently as possible.

It is safe!

Of course, water births are not suitable for everyone – the main criteria is that Mum and baby must be healthy, the baby must be in a head-down position, and the pregnancy must be between 37 and 42 weeks.

But as the majority of pregnancies are healthy, a water birth can offer a natural and more in control option to the labour choices a woman has.

And finally, one of the most frequently asked questions regarding waterbirths appears to be ‘will my baby drown underwater?’… to which the answer is no!

The baby receives all of its oxygen via the placenta and hormones circulating through the baby ensure this occurs until the baby is lifted out of the water.

It is also known as the ‘foetal dive reflex’ and allows babies to be underwater for short periods of time up until around 6 months old.

Exploring breech water birth

Maggie Banks – RM, PhD, ADN, RGON

The paucity of literature on labour and birth in water with breech- presenting babies highlights a need to share (and document) empirical knowledge on the subject to piece together women’s and midwives’ growing experiences.

I was asked recently if leaving a woman in a birth pool to give birth to a breech presenting baby, undiagnosed until on the perineum, was ‘reasonable’ midwifery practice.

The question was qualified in that if the breech baby had been known prior to labour, the birth would definitely not have occurred in water as it is contraindicated in all the waterbirth guidelines in New Zealand.

My initial reaction, though fleeting, was to shrink away and not own my own experiences, knowing that these would be viewed as ‘unreasonable’ given that guidelines were presented as a self-evident truth that could not be argued with, that is, a known breech baby would not be born in water.

The issue of breech presentation and waterbirth is one that I have repeatedly explored in the midwifery and obstetric literature over the years and have found little written on the subject.

What is there usually cites the same source – Herman Ponette, the Belgium obstetrician in Ostend who actively promotes waterbirth with breech babies.1 There is minimal acknowledgement that it occurs in hospitals in the USA and the UK.2, 3

A Google search using the term ‘breech waterbirth’ brings up a handful of consumer stories and the occasional midwifery website which discusses the issue. Of the numerous stories I receive from women and midwives about breech birth, increasingly they involve the use of water.

This article pieces together some knowledge gained from reading, discussions, several of my experiences of, and reflections on, the use of water immersion with breech babies.

Going with the Flow

Initially I had been mindful of Michel Odent’s recommendation of not using deep warm water during breech labour as he warns that the soothing effect of water may mask an unduly painful labour, thereby preventing early detection of what may prove to be a problematic birth.4

My own first experience of using water in a breech labour happened by accident in that the frank breech baby remained undiagnosed until on the perineum. The woman had used the pool unconventionally in labour – she chose to lounge in the pool between contractions and stood during them. Once the breech was diagnosed I asked her to leave the pool and she stood to give birth.

This made me re-look at Michel’s caution. My experience of waterbirth with cephalic presentation had shown me that water immersion only mellows out normal labour pain, not severe or pathological pain, which would indicate the bone on bone painof true disproportion between pelvis and presenting part.

I had to question why this should be any different for a breech presenting baby – and I could not find an answer.

With the same woman’s second frank breech baby, this time diagnosed in pregnancy, she again used the pool unconventionally to relax between her contractions, and she birthed standing on dry land.

These two experiences marked a small shift in the use of water during my attendance at breech labour and birth in that water immersion remained available with a known breech. However, I continued to arrange with women that they would leave the pool for birthing.

This request changed following the birth of Heath, a firstborn presenting as a flexed legs breech. His mother had been deeply relaxed in the pool, assuming a wide open kneeling position leaning over the edge of the pool.

When the baby was visible on the perineum and the urge to push was overwhelming I asked the woman to leave the pool as we had prearranged, which she did.

Whereas she had been strong, independently held her own weight, and was powerful in her pushing, once out of the pool, she needed physical support to be in active birth positions and was unable to relax deeply between contractions as she had previously done in the pool.

The baby was born within half an hour of pushing and all was well but it was clear to me that I had intervened in a physiological birth and this had altered the ease with which the woman gave birth.

This birth occurred some months after the 1st International Waterbirth Conference in 1995.

Publication of Paul Johnson’s classic article 5 on the mechanisms that prevent or, conversely, stimulate breathing in the unborn baby during waterbirth would occur the following year but, in concluding his conference write up, Johnson, a Consultant Clinical Physiologist in the O&G Department at the John Radcliffe Hospital in Oxford, wrote:

“…if the onset of labour is spontaneous, and no drugs are administered, a fetus born with its cord intact, into warm, fresh water, not asphyxiated, is inhibited from breathing”6 – a process not dependant on presentation.

Initiation of breathing following waterbirth occurs once the baby surfaces and is exposed to cooler, dryer air and clamping the umbilical cord 6 – again, irrespective of presentation.

Sheila Kitzinger would report his additional comment that “if water births are of psychological and physiological benefit, it is logical that this benefit should apply to high-risk women too”.7

I knew deep water immersion to be a very powerful modality for achieving a relaxed state for the woman, enhancing vasodilation and placental perfusion and, therefore, oxygenation, of the tissues and organs, including the placenta during the normally stressing (not distressing) time of labour.

I had seen women become oblivious to everyone and everything as they sank into the pool. I had come to recognise the depth of sigh on entering the pool that signalled release of pain, fear, social etiquette and conversation – and these observations were irrespective of whether the baby was coming head or bottom first.

The Buoyancy and Warmth of Water

Another dimension was added when I attended a woman with twins, the second baby being a breech presentation. The woman had grown her babies well and began labour spontaneously at 40 weeks.

Due to the heaviness of her abdomen, she was drawn to labouring in water – her bath at home then, when labour was well established and she had travelled to her chosen birth place, the spa bath in the obstetric hospital.

There was a point in her labour where she needed to be more upright than reclining in the spa bath allowed, so we set up my free standing birth pool for her.

With the water up to the level of her breasts she became almost weightless in the pool, and was able to assume her intuitive positioning in a deep squat for the births of both her babies, the second of which had remained breech.

The woman reflected how supportive the water had been and how the upright position engaged her strength and ability to birth well.

Controlling Pelvic Pressure

When vaginal breech birth was a common occurrence 15 years or so ago, epidural anaesthesia was commonly recommended to overcome a premature urge to push. However, discussion with midwifery colleagues indicates a premature urge to push with a term breech baby is rare in woman-controlled positioning.

One woman who did experience significant pelvic pressure from the onset of labour with spontaneous rupture of membranes while having her first baby – a frank breech presentation – provided a piece to the mosaic of the use of water.

She controlled the urge to push by long and slow breathes during contractions and lying on her side on a floor mattress for most of her labour, rising only to crawl to the toilet on her hands and knees. After 12 hours of this, the pressure was overwhelming, even when lying.

While her good progress was evident from the lengthening burgundy buttock crease and her birthing energy, it was not time to use that expulsive energy. A vaginal examination confirmed a thin rim of cervix remained.

While a hands and knees position reduced the pressure, it was not until she lounged in the pool on her abdomen that the pressure again became tolerable. The pool was invaluable for enabling her to resume breathing over the contractions for the next three hours.

In the last hour prior to the birth, the woman commenced her grunting expulsions. As this had not brought her baby to a visible position in that time, I asked her to stand for one contraction to test the power of this feeling.

Simply standing engaged the pelvic pressure enough to bring the baby to almost rumping with the first push.

The second surge saw the baby rumped and progress so the popliteal spaces (back of the knees) were visible. With the next, he was born to the ankles, then descended quickly to wear his ‘perineal hat’ and his head was gently released without perineal trauma. All of this occurred without a contraction as the women responded to the pelvic pressure.

Assessing the Baby

The New Zealand Guideline Group’s best practice evidence-based guideline on breech labour and birth acknowledges that the evidence does not support continuous electronic foetal heart rate (EFM) monitoring by cardiotocography over intermittent auscultation.8

This is because, just as for well women and their babies with no alerting factors, there are no significant differences in standard measures of newborn wellbeing (including cerebral palsy and infant mortality) with continuous EFM in labour for ‘high risk’ situations, which frank or flexed legs breech presentation at term is deemed to be by some.

Only beneficial for its association with a reduced incidence of neonatal seizures, continuous EFM is associated with increased maternal morbidity by way of the accompanying increase in Caesarean and operative birth rates.9

At any given point the midwife needs to know that the baby is coping well with labour by assessment of his movements10 and listening to his heart beat.

As with any other labour for well women and babies, listening can be easily acheived with a Pinard stethoscope (or handheld, waterproof doppler) during water immersion.

Essential Elements of Physiological Breech Birth

Midwives commonly reflect on how their practice changes with attending waterbirths of cephalic presenting babies to become more ‘hands-off ’ during birth.

Confident that the water frequently dissipates urges to explosively push, while also supporting the woman’s perineal tissues and the baby as he is born, the midwife is drawn to a non touch vigilant attendance. This ‘hands off ’ in the absence of problems is the ‘golden rule’ during breech birth.

Maternal effort is an important part of achieving a ‘hands-off ’, spontaneous birth. As with any birthing, the woman needs to be supported to choose positions of comfort in the water which enhance her power and strength – kneeling, squatting, hands and knees or reclining.

Whichever birth position is chosen, the midwife needs to position herself so she can see both the advancing baby and the umbilical cord, and be in a position to palpate the umbilical cord if necessary.

The midwife may need ‘hands on’ for the birth of the head but the support of the water usually ensures gentle and woman- controlled birth of the baby’s head. Due to the reduction in gravity and an accompanying reduction in an urge to push for the head, the woman may need to be reminded to release the baby’s head.

Midwives who regularly attend waterbirths with cephalic presentation frequently reflect that if there is a problem during birth, for example, shoulder dystocia, they will initially try to correct it in the pool.

This avoids delay while utilising the water’s buoyancy so the woman can move easily to adopt very wide open positions that are needed for manoeuvres.

While Pinotte1 notes a reduced need for routine manipulations of the breech baby with waterbirth, in the rare circumstance that a manoeuvre is needed – to bring down stuck arms11 and/or flex, cradle and scoop out the baby’s head12 – these could also initially be done in the pool, again, avoiding delay.

The woman, however, would be asked to get out of the pool if problems were not easily remedied.

The Ongoing Mosaic

For some maternity professionals the issue of vaginal breech birth is no longer worth considering in the wake of the Term Breech Trial13 despite concerns about its methodological flaws.14-17

For others it remains a planned option.18-22 There will, of course, always be undiagnosed breech babies in labour, irrespective of the degree of antenatal scrutiny.

While some consider undiagnosed breech an ‘obstetric emergency’, the manner in which a midwife facilitates
a vaginal breech birth, first diagnosed when birth is imminent, is the sameas if it was diagnosed antenatally and a vaginal breech birth is planned, albeit the latter having obstetric backup available with the birth in an obstetric hospital.

The use of deep water immersion with mal-presentation (read: breech)
is contraindicated in hospital clinical guidelines on waterbirth, and the use of water is absent as a modality in vaginal breech birth guidelines.

Embracing these, giving birth in water to a breech baby would be out of the question for some maternity providers.

Yet others are very specific
 in seeing breech presentation as a positive indication for waterbirth because of the buoyancy afforded to the baby and umbilical cord, both of which are kept warm in the water until surfacing into the cooler air,1,23,24 contraindicated only if the breech labour is not progressive and/
or is complicated.25

Midwifery can have additional knowledge fragments to obstetric knowledge, gained by our deep relationships with women.

Being attentive to women who are called to use water through breech labour and birth and walking side by side with them during this time has added to my understanding of facilitating physiological breech birth.

We need to be able to share the practice wisdom which comes from our experiences, discussions and reflections. We also need to be able to do this without fear of repercussions that may be activated from that disclosure. As a result, we will continue to find ongoing pieces to the mosaic of breech waterbirth.


Ponette H. Breech and twin deliveries in the water. Accessed 20 March 2000. Available at fi/~lauhakan/whale/waterbaby/p6.html
Kitzinger S. Sheila Kitzinger’s letter from England. Birth 1991;18(3):170–171.
Harper B. Waterbirth basics – from newborn breathing to hospital protocols. Midwifery Today 2000;54:9– 10,12–15,68.
Odent M. Birth reborn. Souvenir Press: New York, 1984:103–105.
Johnson P. Birth under water – to breathe or not to breathe. BJOG: An International Journal of Obstetrics and Gynaecology 1996;103(3):202–208.
Johnson P. Birth under water – to breathe or not to breathe. In, Lawrence Beech BA (ed).Water birth unplugged. Proceedings of the First International Water Birth Conference. Books for Midwives: Cheshire, England, 1996:31–33.
Kitzinger S. Sheila Kitzinger’s letter from England: is water birth dangerous? Birth 1995; 22(3):172–173.
New Zealand Guidelines Group. Care of women with breech presentation or previous Caesarean birth. New Zealand Guidelines Group: Wellington, 2004:xxi, 32.
Alfirevic Z, Devane D, Gyte GML. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database of Systematic Reviews 2006, Issue 3. Art. No.: CD006066. DOI: 10.1002/14651858. CD006066.
Banks M. Utilising the unborn baby’s in-labour movements. New Zealand College of Midwives Journal 2003;29:6.
Banks M. Breech birth woman-wise. Birthspirit: Hamilton, New Zealand, 1998:88–89.
Ibid., pp. 90–91.
Hannah M, Hannah WJ, Hewson SA, Hodnett ED, Saigal S, et al. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised multicenter trial. Lancet 2000;356:1375–1383.
Glezerman M. Five years to the term breech trial: the rise and fall of a randomized controlled trial. American Journal of Obstetrics and Gynecology 2006;194(1):20–25.
Kotaska A. In the literature: combating coercion: breech birth, parturient choice, and the evolution of evidence-based maternity care. Birth 2007;34(2):176–180.
Keirse MJNC. Evidence-based childbirth only for breech babies? Birth 2002;29(1):55–59.
Goer H. When research is flawed: planned vaginal birth versus elective Cesarean for breech presentation. Accessed 14 August 2007. Available at Research/WhenResearchisFlawed/ VaginalBreechBirth/tabid/167/ Default.aspx
Goffinet F, Carayol M, Foidart J, Alexander S, Uzan S, et al. Is planned vaginal delivery for breech presentation at term still an option? Results of an observational prospective survey in France and Belgium. American Journal of Obstetrics and Gynecology 2006;194(4):1002–1011.
Hellsten C, Lindqvist PG, Olofsson P. Vaginal breech delivery: is it still an option? European Journal of Obstetrics & Gynecology and Reproductive Biology 2003;111(2):122–128.
Sibony O, Luton D, Oury J, Blot P. Six hundred and ten breech versus 12,405 cephalic deliveries at term: is there any difference in the neonatal outcome? European Journal of Obstetrics & Gynecology and Reproductive Biology 2003;107(2):140–144.
Giuliani A, Schöll WMJ, Basver A, Tamussino KF. Mode of delivery and outcome of 699 term singleton breech deliveries at a single centre. American Journal of Obstetrics and Gynecology 2002;187(6):1694–1698.
van Roosmalen J, Rosendaal F. There is still room for disagreement about vaginal delivery of breech infants at term. BJOG: An International Journal of Obstetrics and Gynaecology 2002;109(9):967–969.
Charkowsky I. In: Napierala S. Water birth: a midwife’s perspective. Bergin & Garvey: London, 1994:181–182.
Enning C. Personal communication, 2008.
Ponette H. The New Aquatic Maternity in Ostend. Accessed 20 March 2000. Available at fi/~lauhakan/whale/waterbaby/p2.html

MIDIRS: The use of water during childbirth

20 November 2015:

Since the early 1980s use of immersion in water during labour and birth has been increasingly promoted to enable women to relax, help them cope with pain, and maximise their feelings of control and satisfaction1-4.

In 1992 the House of Commons Health Committee recommended all hospitals provide the option of a birthing pool where practicable5. Currently few women give birth in water but the option of immersion or showering during the first stage of labour is commonly available.6-8

Although problems have arise which have been attributed to water use, the results of the most formal evaluations have not clearly associated water use with harmful outcomes for mother or baby 3,9-13.

The lack of robust evidence of harm or benefit means that childbearing women and health practitioners alike are subject to conflicting opinion about the usefulness and safest of water, particularly for birth.

However, a recent observational study over a nine year period concluded that ‘waterbirth was associated with low risks where obstetric guidelines were followed’16.

At present in the UK there is no reliable measurement of the rate of birth in water.
A national survey of maternity units in the UK in 2002 found that 63% (216/342) had a birthing pool8; 67% (228/342) reported having at least one midwife trained to provide support for women giving birth in water and 36% (121/342) said that at least half of the midwives working in their unit were trained to support birth in water.

How is water used during labour?

Water use ranges from informal, for example when a woman in early labour decides to get into her bath at home before going to hospital, to formal use in a specially designed birthing pool. Informal use in a domestic bath or shower is often initiated by a woman herself to help her cope at home before her labour is well established.

Formal use implies either that a woman has actively chosen to use water as part of her plan for labour and/or childbirth or that a health professional, usually a midwife, has suggested use during established labour.

Why water use is promoted

Use of immersion in water during childbirth has largely been driven by pregnant and birthing women17 and supported by midwives. During the first stage of labour it is advocated to shorten labour and help a woman relax and cope with contractions, feel more in control, and to reduce intervention by health professionals3,18-21.

During the second stage, proponents use it to allow perineal tissues to stretch spontaneously, birth to occur with minimum intervention, and to provide the baby with a gentler transition into extra-uterine life. Expectant management of the third stage is likely if a woman is in water.

Limitations on water use

Many health professionals consider that water use during the first stage of labour in uncomplicated pregnancy is unlikely to harm the mother or baby22,23, whilst others have concerns about water use at any point in labour14.

Local clinical guidelines may restrict water use to women considered at ‘low’ obstetric risk7, and other aspects of care may be prescribed, for example when and how to monitor the temperature of the water, the degree of cervical dilatation at which to begin its use24, and whether the immersion is considered safe for all stages of labour6,25.

Problems associated with possible risk of infection or cross infection caused by amniotic fluid, blood, and faeces have been described26-28 and some hospitals have restricted use of birthing pools to women who have tested HIV negative during pregnancy29.

However, at a multi-disciplinary consensus meeting held in London in 1996, it was agreed that mandatory HIV testing for prospective users of birthing pools could be an extreme reaction to the perceived risks and that high standards of pool hygiene would be an appropriate way forward30. Local infection control guidelines should cover the use of water pools25,31 and procedures to minimise risk of cross infection13, 32.

It has been suggested that high water temperature can cause serious changes in feto-maternal haemodynamic regulation and fetal thermoregulation33. It has been reported that fetal tachycardia can be reduced by cooling the water34 and most providers and clinical guidelines specify a temperature range within which the water should be maintained during the first and second stage of labour7,35.

The prospect of a woman giving birth in water can cause anxiety about how to deal with unexpected emergencies such as shoulder dystocia, the need to avoid the baby inhaling water, or being unaware that the umbilical cord has been severed11.

Despite the fact that it denies women choice about birth, one response has been to limit water use to first stage only6. Development of agreed clinical protocols to deal with unexpected complications25 and providing training which allows3 staff to achieve relevant competencies is key to enabling real choice for women about use of water.

There are theoretical risks of increased blood loss, retained placenta, or water embolism, and professional advice is often to conduct the third stage out of water25.

Because water adds to the difficulty of estimating blood loss accurately, it has been proposed that blood loss would be more appropriately estimated as being either more or less than 500ml36 and that the overall physical condition of the woman should be used as the most important indicator to assess the impact of any bleeding37.

In summary, although not universally accepted, first stage water use is less controversial than immersion for the second or third stage of labour22,23,38.

The research evidence

The effects of water use during the first stage of labour on maternal and fetal outcomes have been evaluated in several randomised controlled trials4,9,10,12,13,39 with sample sizes ranging from 60 to 123934.

The use of water has been shown to reduce the rate of augmentation40; however, no trial has been large enough to measure the effect of water use on important neonatal outcomes such as perinatal death or other serious neonatal or maternal morbidity.

In addition, there has often been significant cross-over between study groups4,12, reducing the likelihood of identifying clear differences between women allocated to water use and those not.

A systematic review of eight trials41 indicated a statistically significant reduction in the use of pain relief with no such significant difference in the rate of operative deliveries or in neonatal outcomes.

It concluded that while the use of water in the first stage of labour can be of benefit to some women, there is no evidence at present to support or not support a woman’s choice to give birth in water.

Retrospective comparison has been made of women who have used water with those who have not42,43.

However, there are considerable difficulties in interpreting such studies because of the possibility that the results are inherently biased.

In the same way, findings of cohort studies which suggest benefit for water use in terms of pain relief and increased rate of cervical dilatation44-47, or those which indicate differences in rates of maternal and neonatal infection48-50, are also open to criticism.

A recent study16 compared neonatal and maternal morbidity and mortality for spontaneous singleton births that took place in water or on land.

This was an observational study over a nine year period and data were obtained through standardised questionnaires for 9,518 births, of which 3,617 were waterbirths and 5,901 landbirths.

Statistically significant differences were identified between the two groups; women who gave birth using water were less likely to suffer serious perineal trauma, use no analgesia and have a lower blood loss than women in the landbirth group.

Maternal and neonatal infection rates were the same for both groups, but more landbirth babies had neonatal complications requiring transfer to an external NICU.

During the study, there were neither maternal nor neonatal deaths related to spontaneous labor.

The authors acknowledge the potential bias that could arise from the self-selection issue but argue that this is well accounted for in the analysis.They conclude that waterbirths are associated with low risks for both mother and child when obstetrical guidelines are followed.

Another study51 based in a centre for low risk women was a retrospective case review over a five year period of 1355 births in water.

When compared with land births over a corresponding period, women who gave birth in water had significantly fewer episiotomies with no evidence of a corresponding rise in lacerations, a reduction in the length of the first stage of labour, no increase in the risk of acquired infection or aspiration pneumonia and considerably lower levels of analgesia use.

Neonatal condition assessed by arterial cord blood pH, base excess and birth weight showed no differences.The authors conclude that this represents a realistic option for women at low risk of complications.

Many reports about water use are case series1,20,52-62 and focus on perceived benefits of water use for the mother, her baby and birth attendant.

These include shorter labour52, less use of pharmacological analgesics46,53, less intervention by care givers19, lower rate of perineal trauma60-62, and increased satisfaction with the experience of labour and birth54.

By contrast, some case reports have highlighted serious problems such as fetal overheating33,34, neonatal sepsis28, near drowning63 or death64.

Overall, reviews of the evidence21,23,65,66 conclude that appropriately large-scale research is still required to evaluate rigorously the physiological effects13, clinical outcomes, and economic impact of water use.

What we don’t know

The current evidence about water use remains quite heavily dependent on case series and comparison studies that include varying sized samples.

Therefore, reliable evidence about efficacy and effectiveness is still equivocal67.

  • Outstanding issues which require evaluation include:
  •  is water use causally associated with an increase in perinatal mortality or serious perinatal morbidity?
  •  at what dilatation should a woman be advised to begin water use?
  •  does the size or shape of the water container affect outcomes?
  •  if water has an effect on important physical/psychological outcomes for mothers or babies, are there particular women who should avoid using water during labour?
  •  to what extent immersion in water affects the length of labour?

Implications for maternity

Water use during the first stage of labour is offered by the majority of maternity care provider units in the UK and most offer support for water birth8.

Introduction of, and sustained suppor t for, water use may have considerable implications for service governance68.

However, not all costs fall to providers of care; a substantial cost burden is likely to be borne by labouring women themselves during informal use in domestic baths and showers or by hiring specially designed pools for use in their home or in a maternity unit.

Most maternity units have installed a water pool for use in labour8 and although installation and maintenance of a specially designed pool in a maternity unit involves obvious financial cost, this may be offset if there is a reduction in analgesia and anaesthetic use44.

There is evidence that formal water use means that at least one midwife will be in constant attendance during the first stage of labour and that at least two will be in attendance for birth7.

This level of staffing may be difficult to sustain and may have implications for equity of care for women who do not use water22.

Clear strategies for the training, preparation and support of staff who offer use of water during labour are recognised as essential7,25,31,37,44.

Key components of these include clarification of the roles of different maternity health professionals, multi-disciplinary development of local protocols, development of guidelines for clinical practice, and short-term secondment of midwives to learn alongside practitioners skilled and experienced in water use.

Implications for practice

Women may choose to use immersion in water during labour and/or birth. Midwives and other maternity care workers should therefore be knowledgeable about the evidence in terms of potential advantages and disadvantages.

Given the current quality of reliable evidence, effective practice is likely to be informed and influenced substantially by shared experience and personal observation.

Disproportionate weight may therefore be placed on perceived disadvantages or advantages and credibility given to outcomes which may not be associated causally with water use.

Practitioners should be alert to the evolving evidence base which underpins the use of water.

  •  Immersion in water during childbirth is a care option women may wish to choose and which health professionals have a responsibility to discuss and support using clear and balanced information.
  •  As with any labour or birth, it is essential to maintain systematic, contemporaneous records and to monitor and record routine observations about the well-being of the mother and the fetus. These data should be used to audit care and gather information about outcomes.
  •  Water temperature should be measured regularly using a thermometer and recorded.The water temperature should be comfortable for the woman and should be not more than 37°C during the first stage of labour and between 36-37°C in the second stage.
  •  Maternal faeces, meconium and blood clots should be removed from the water using a sieve, and effective cleaning of pools before/after use should be carried out to minimise risk of infection or cross-infection.
  •  Birth in water: the baby should be born fully submerged and be brought gently and without delay to the surface so that he/she can make their first respiratory efforts in air.
  •  Comprehensive, large scale research is required to address questions about the safety and effectiveness of using water during labour and/or birth.

Reproduced from Midirs 2005, last revised Jan 2005, review date Jan 2007. Informed Choice is supported by the Royal College of Midwives and the National Childbirth Trust.


  1. Odent M. Bir th under water. Lancet 1983;2:1476-7.
  2. Rosenthal MJ.Warm-water immersion in labor and birth. Female Patient 1991;16:35-47.
  3. Balaskas J, Gordon Y. Water birth. London:Thorsons, 1992.
  4. Rush J, Burlock S, Lambert K et al.The effects of whirlpool baths in labor: a randomized, controlled trial. Birth 1996;23:136-43.
  5. House of Commons (1991-92). Health Committee. Second report. Maternity services. HC 29-I. London, HMSO, 1992.
  6. Alderdice F, Renfrew M, Marchant S et al. Labour and bir th in water in England and Wales, BMJ 1995;310:837.
  7. Marchant S,Alderdice F,Ashurst H et al.Labour and birth in water:national variations in practice.Br J Midwifery 1996;4:408-12,429-30.
  8. Gold L. Good Birth Guide. London:Vermillion, 2002.
  9. Schorn MN, McAllister JL, Blanco JD.Water immersion and the effect on labor. J Nurse Midwifery 
  10. Cammu H, Clasen K,Van Wettere L et al.‘To bathe or not to bathe’ during the first stage of labor. 
Acta Obstet Gynecol Scand 1994;73:468-72.
  11. Gilbert RE,Tookey PA. Perinatal mortality and morbidity among babies delivered in water: 
surveillance study and postal survey. BMJ 1999;319:483-7.
  12. EckertK,TurnbullD,MacLennanA.Immersioninwaterinthefirststageoflabor:arandomized 
controlled trial. Birth 2001;28:84-93.
  13. Woodward J,Kelly SM.A pilot study for a randomised controlled trial of waterbirth versus land birth. 
BJOG 2004;111:537-45.
  14. Chamberlain G. Statement on birth underwater. London: Royal College of Obstetricians and Gynaecologists, 1993.
  15. FlintC.Waterbirthandtheroleofthemidwife.In:BeechBALed.Waterbirthunplugged.Hale:Books for Midwives Press, 1996:60-2.
  16. GeissbuehlerV, Stein S, Eberhard J.Waterbirths compared with landbirths: an observational study of nine years. J Perinat Med 2004;32(4):308-14.
  17. Richmond H.Women’s experience of waterbirth. Practising Midwife 2003;6:26-31
  18. Labourandbirthinwater.London:NCT,2002.
  19. Birthwithoutviolence.Reved.London:Mandarin,1991.
  20. Church LK.Water birth: one birthing center’s observations. J Nurse Midwifery 1989;34:165-70.
  21. McCandlishR,RenfrewM.Immersioninwaterduringlaborandbirth:theneedforevaluation.Birth 1993;20:79-85.
  22. Mills MS, Stirrat GM.Water immersion and water birth. Curr Obstet Gynaecol 1996;6:35-39.
  23. Johnson P. Birth under water – to breathe or not to breathe. Br J Obstet Gynaecol 1996;103:202-8.
  24. ErikssonM,MattssonLA,LadforsL.Earlyorlatebathduringthefirststageoflabour:arandomised study of 200 women. Midwifery 1997;13:146-8.
  25. Birthinwater.London:RCOG,2001. [accessed June 2003]
  26. ParkerPC,BolesRG.Pseudomonasotitismediaandbacteremiafollowingawaterbirth.Pediatrics 1997;99:653.
  27. RidgwayGL,TedderRS.Birthingpoolsandinfectioncontrol.Lancet1996;347:1051-2.
  28. Hawkins S.Water vs conventional births:infection rates compared.NursTimes 1995;91(11):38-40.
  29. TrustdemandsHIVtestforpoolbirths.NursTimes1996;92(2):9.
  30. HIVtransmissioninbirthingpools.London:TerrenceHigginsTrust,1996.
  31. Royal College of Midwives. The use of water in labour and birth. London: Royal College of Midwives, 2000.
  32. Schulster L, Chinn RYW. Guidelines for environmental infection control in health care facilities. Morbidity and Mortality Weekly Report 2003;52/RR-10:20-1.
  33. RosevearSK,FoxR,MarlowNetal.Birthingpoolsandthefetus.Lancet1993;342:1048-9.
  34. DeansAC,SteerPJ.Temperatureofpoolisimportant.BMJ1995;311:390-1.
  35. Waterbirth:anattitudetocare.Hale:BooksforMidwivesPress,1995:66.
  36. Theuseofwaterduringbirth.London:RCM,1994.
  37. Beech BAL.Water birth – a passing fad? Mod Midwife 1997;7(5):11-4.
  38. RosserJ.Iswaterbirthsafe?Thefactsbehindthecontroversy.MIDIRSMidwiferyDig1994;4:4-6.
  39. Ohlsson G, Buchhave P, Leandersson U et al.Warm tub bathing during labor: maternal and neonatal effects. Acta Obstet Gynecol Scand 2001;80:311-4.
  40. Cluett ER, Pickering RM, Getliffe K et al. Randomised controlled trial of labouring in water compared with standard of augmentation for management of dystocia in first stage of labour. BMJ 2004;328:314-318.
  41. CluettER,NikodemVC,McCandlishREetal.Immersioninwaterinpregnancy,labourandbirth. The Cochrane database of Systematic Reviews 2004, issue 1.
  42. Burke E,KilfoyleA.A comparative study:waterbirth and bedbirth.Midwives 1995;108:3-7.
  43. Otigbah CM,Dhanjal MK,Harmsworth G et al.A retrospective comparison of water births and conventional vaginal deliveries. Eur J Obstet Gynecol Reprod Biol 2000;91:15-20.
  44. LenstrupC,SchantzA,BergetAetal.Warmtubbathduringdelivery.ActaObstetGynecolScand 1987;66:709-12.
  45. Waldenstrom U, Nilsson CA.Warm tub bath after spontaneous rupture of the membranes. Birth 1992;19:57-63.
  46. GeissbuhlerV,Eberhard J.Waterbirths:a comparative study.Fetal DiagnTher 2000;15:291-300. 47.
  47. AirdIA,LuckasMJM,BuckettWMetal.Effectsofintrapartumhydrotherapyonlabourrelated parameters. Aust NZ J Obstet Gynaecol 1997;37:137-42.
  48. AndersenB,GyhagenM,NielsenTF.Warmbathduringlabour.Effectsonlabourdurationand maternal and fetal infectious morbidity. J Obstet Gynaecol 1996;16:326-30.
  49. Eriksson M, Ladfors L, Mattsson LA et al.Warm tub bath during labor.A study of 1385 women with prelabor rupture of the membranes after 34 weeks of gestation. Acta Obstet Gynecol Scand 1996;75:642-4.
  50. FordeC,CreightonS,BattyAetal.Labouranddeliveryinthebirthingpool.BrJMidwifery 1999;7:165-71.
  51. Thoni A, Moroder L.Waterbirth: a safe and natural delivery method: experience after 1355 waterbirths in Italy.MidwiferyToday 2004;70:44-8.
  52. Garland D, Jones K.Waterbirth,‘first stage’ immersion or non-immersion? Br J Midwifery 6 1994;2:113-20.
  53. Rosenthal M.The use of warm immersion in labour at the Family Birthing Centre of Upland (California). In: Beech BAL edWater birth unplugged. Hale: Books for Midwives Press, 1996:92-5.
  54. HaddadF.Labourandbirthinwater:anobstetrician’sobservationsoveradecade.In:BeechBALed. Water birth unplugged. Hale: Books for Midwives Press, 1996:96-108.
  55. BurnsE,GreenishK.Poolinginformation.NursTimes1993;89(8):47-9.
  56. Nightingale C.Water and pain relief – observations of over 570 births at Hillingdon. In: Beech BAL ed.Water birth unplugged. Hale: Books for Midwives Press, 1996:63-9.
  57. Muscat J.A thousand water births:selection criteria and outcome.In:Beech BAL ed.Water birth unplugged. Hale: Books for Midwives Press, 1996:77-81.
  58. AdamM.WaterbirthinVienna:facts,thoughtsandphilosophyoftheGeburtshausNussdorf.In: Beech BAL ed.Water birth unplugged. Hale: Books for Midwives Press, 1996:82-7.
  59. UllerA.WaterbirthinDenmark.In:BeechBALed.Waterbirthunplugged.Hale:BooksforMidwives Press, 1996:119-29.
  60. Brown L.The tide has turned: audit of water birth. Br J Midwifery 1998;6:236-43.
  61. GarlandD,JonesK.Waterbirth:supportingpracticewithclinicalaudit.MIDIRSMidwiferyDig 2000;10:333-6.
  62. Burns E.Waterbirth. MIDIRS Midwifery Dig 2001;11(suppl 2):S10-3.
  63. Nguyen S, Kuschel C,Teele R et al.Water birth – a near-drowning experience. Pediatrics 2002;110:411-3.
  64. RobinsonJ.AwaterbirthdeathinSweden.AIMSJ1993;5:7-8.
  65. GarlandD,JonesK.Waterbirth:updatingtheevidence.BrJMidwifery1997;5:368-73.
  66. BeakeS.Waterbirth:aliteraturereview.MIDIRSMidwiferyDig1999;9:473-7.
  67. Grunebaum A, Chervenak F.The baby or the bathwater: which should be discarded? Perinat Med 2004;32(4):306-7.
  68. JenkinsR.Assessingtheeffectofanewhealthtechnology.In:BeechBALed.Waterbirthunplugged. Hale: Books for Midwives Press, 1996:53-8.

The benefits of labouring in water for overweight and obese mothers

Excerpt from article published by Big Birtha who provides information and support for bigger mums and mums to be.

All women are more buoyant and supported by water, it’s one of the reasons swimming and aqua aerobics are particularly good forms of exercise while pregnant.

But the benefit is likely to be greater for obese women, as fatter bodies are naturally more buoyant.

The buoyancy and support provided by water eases movement, which may make both maintaining an active labour and facilitating access for monitoring easier.

On land, it is cumbersome and difficult for a heavily pregnant woman of any size to quickly move between kneeling, reclining, sitting, leaning, crouching, turning from front to back etc.

In water, it is simple and easy to shift to whatever position is most comfortable/convenient, even midway through contractions.

Being in water also promotes positions which are more agreeable for birthing. Lying flat on your back on a bed is one of the worst positions to be in during labour.

When you are on your back you are working against gravity; actually trying to push the baby out uphill.

It’s only a slight incline, but it’s there.

To add to the problem, when lying down, your body weight is also resting on your coccyx (tailbone), forcing it into the pelvic cavity and reducing space for the baby.

In water, even if you were to float on your back, you wouldn’t be putting the same pressure on your tailbone, and you are far more likely to take an upright position, crouching or kneeling, for instance; positions which on land are uncomfortable to maintain, but not in water.

This frees up your coccyx to keep out of the way.

It is well documented that warm water reduces pain felt by labouring women, and decreases the use of other pain relief.

Given the issues with providing epidural anaesthesia to obese women, it seems sensible that using water; an effective non-pharmaceutical intervention to help with pain should be an attractive alternative?

Obese women are at increased risk of having longer labours, and of moving on to instrumental delivery and caesarean sections for ‘failure to progress’.

Yet immersion in water has been shown to significantly reduce the length of labour in ‘normal’ sized women.

It doesn’t take much of a leap of imagination to consider that water might help to address this problem, at least in some obese women?

Active Birth Pools are specially designed for to accomodate bigger mothers enabling them to move and benefit from the positions natural to labour and birth.

Various means of entry and exit from the pool as well as emergency evacuation have been considered and designed for to safeguard  over weight mothers and the midwives who care for them.

Evidence Based Guidelines for Midwifery Led Care in Labour: Birth Environment

Practice Points

Ensure that pregnant women receive high quality care throughout their pregnancy, have a normal childbirth wherever possible, are involved in decisions about what is best for them and their babies, and have choices about how and where they give birth (DH 2004).

Respect for a woman’s wishes and her involvement in decision making is essential to her care in pregnancy and labour (NICE 2007; DH 2004). The birth plan should be discussed in full with the midwife looking after the woman in labour.

Hospital is an alienating environment for most women, in which institutionalised routines and lack of privacy can contribute to feelings of loss of control and disempowerment (Lock and Gibb 2003; Steele 1995).

The studies by Green et al. (1990) and Simkin (1992) found that control, or lack of it, was important to the women’s experience of labour and their subsequent emotional well-being.

Trials have demonstrated the benefits to women of having a low-risk, midwife-led area as an alternative to the conventional labour ward (Birthplace in England Collaborative Group 2011; Hodnett et al. 2010; Hatem et al. 2008; Byrne et al. 2000; Hodnett 2000; Waldenstrom 1997; Hundley et al. 1994; McVicar et al. 1993).

The non-labour ward or radically modified environment is associated with lower rates of analgesia, augmentation and operative delivery, as well as greater satisfaction with care and positive effect on care givers (Birthplace in England Collaborative Group 2011; Hodnett et al. 2010; Hodnett et al. 2009).

Midwives should be aware of the influence the physical environment has on their practice (Hodnett et al. 2010).

2 Evidence Based Guidelines for Midwifery-Led Care in Labour ©The Royal College of Midwives 2012

Birth Environment

The environment in which a woman labours can have a great effect on the amount of fear and anxiety she experiences.

Hospital is an alienating environment for most women, in which institutionalised routines and lack of privacy can contribute to feelings of loss
of control (Lock and Gibb 2003; Steele 1995).

Brown and Lumley (1994) found that the technology and intervention that has now become commonplace on many labour wards was implicated in women’s dissatisfaction with labour. Increased anxiety brought on through loss of control can interfere with the normal effective physiology of labour (Steele 1995).

The studies by Green et al. (1990) and Simkin (1992) found that control,
or lack of it, was important to the women’s experience of labour and their subsequent emotional wellbeing.

It is not easy to separate the influence of the model of care
from the physical environment on the outcomes.

Hodnett et al. (2010) discuss the effect that the physical environment can have on practice, within the supportive social model of care.

In 2009, Hodnett et al. undertook a pilot study aimed to investigate the impact of the physical environment on women and practitioners by making simple but radical modifications to a hospital labour room, which included the removal of the standard hospital bed and the addition of equipment to promote relaxation, mobility,
and calm.

The women were then randomly allocated either the modified or typical
labour room.

Though the pilot was small in numbers, the outcomes indicated that the physical environment modification had a positive effect on women and care providers.

The philosophy of mobilisation in active labour was increasingly supported in the modified environment (Hodnett et al. 2009).

RCM (2008) Birth Centre Standards for England Standard 7.6 sets criteria of
‘An environment that protects and promotes women’s privacy and dignity, respecting

their human rights and provides facilities to maintain adequate nutrition and hydration in labour.’

Respect for a woman’s wishes, and her involvement in decision-making is essential to her care in pregnancy and labour (DH 2007, DH 2004).

National Service framework maternity policy (DH 2004) pledged that service should “ensure that pregnant women receive high quality care throughout their pregnancy, have a normal childbirth wherever possible, are involved in decisions about what is best for them and their babies, and have choices about how and where they give birth” and the choice aspect remains within NHS future plans (DH 2010).

It would appear that women have better physical and emotional labour outcomes when they are involved in the decision making (Hodnett et al. 2010).

Green et al.’s study (1990) found that good information was important to a woman’s birth experience and also to her subsequent emotional well-being.

The decision-making must extend to the woman’s choice of companion(s), who should be made to feel welcome in the labour ward.
Evidence Based Guidelines for Midwifery-Led Care in Labour ©The Royal College of Midwives 2012

Birth Environment

Birth planning is a continuous part of antenatal care.

This requires a focussed discussion about place of birth, at which ‘women should receive clear, unbiased advice and be able to choose where they would like their baby to be born’ (DH 2007; DH 2004).

The recent Birthplace in England study (Birthplace in England Collaborative Group 2011) looked at safety of births planned in 4 different settings: home, freestanding midwifery units, alongside midwifery units and obstetric units for women with straightforward pregnancies.

It found that birth is safe wherever it takes place but there is a small but increased risk of adverse outcome for the neonate for nulliparous women associated with planned home birth.

The outcomes for multiparous or in other midwife led birth environments were the same. The study did not look into reasons for this and further exploration into the variation is required.

However, this information needs to be included in the discussions with women antenatally. The ‘birth talk’ and associated birth plan are essential opportunities for women and midwives to share information (NICE 2007).

The birth plan should be discussed in full with the midwife looking after the woman
in labour.

Women often find it difficult to ask questions, so midwives need to encourage them to do so, and to act as advocate for the wishes expressed (Kirkham 1986).

Trials have demonstrated the benefits to women of less intervention and more mobility, in having a low-risk, midwife-led area as an alternative to the conventional labour ward (Birthplace in England Collaborative Group 2011; Hodnett et al. 2010; Hatem et al. 2008; Byrne 2000; Hodnett 2000; Waldenstrom 1997; Hundley et al. 1994; McVicar et al.

1993). The philosophy behind the provision of such units is to provide a ‘homely’ environment, where women can take more control and labour is managed with minimal intervention (Hodnett et al. 2010; Hundley et al. 1994).

It has also been found that women who give birth in low-tech, midwife-led facilities, e.g. home or birth centres, require less pharmacological analgesia (Hodnett et al. 2010; Chamberlain et al. 1997; Skibsted and Lange 1992).

Hodnett et al.’s (2010) review found that the alternative birth setting environment is associated with lower rates of analgesia, augmentation and operative delivery, as well as greater satisfaction with care.

There was a non-statistically- significant trend towards higher perinatal mortality in the home-like setting, and the reviewers conclude that ‘an over-emphasis on normality’ may lead to delayed recognition of or action regarding complications.

Walsh (2004) has challenged this conclusion from his own experience and suggests that midwives who work in this environment are ‘astute assessors of normal birth’ and highly skilled practitioners, who are active in performing repeated emergency drills.

Hodnett et al. (2010) found, in their comparison of alternative and conventional labour and birth environments, that staff working in the ‘alternative’ settings all shared philosophies and guidelines that valued midwifery-led care.

The study was not able to explore the separate influences of the physical environment and models of care such as, for example, continuity of caregiver, but concluded that the impacts of midwifery-led care and the nature of the birth setting are fundamentally interdependent in the chain of cause and effect leading to more positive outcomes.

Evidence Based Guidelines for Midwifery-Led Care in Labour ©The Royal College of Midwives 2012

Birth Environment

Brown S, Lumley J (1994) Satisfaction with care in labour and birth: a survey of 790 Australian women. Birth 21(1): 4-13

Birthplace in England Collaborative Group (2011) Perinatal and maternal outcomes by planned place of birth for healthy women with low risk pregnancies: The Birthplace in England national prospective cohort study. British Medical Journal 343: d7400

Byrne J, Crowther C, Moss J (2000) A randomised controlled trial comparing birthing centre care with delivery suite care in Adelaide. Australia Australian and New Zealand Journal of Obstetrics and Gynaecology 40(3): 268-74

Chamberlain G, Wraight A, Crowley P (1997) Homebirths: The Report of the 1994 Confidential Enquiry by the National Birthday Trust Fund. Carnforth, Lancashire: The Parthenon Publishing Group

Department of Health (DH) (2010) Equity and Excellence: Liberating the NHS. London: HMS

Department of Health (2004) National Service Framework for Children, Young People and Maternity Services. London:DH

Green JM, Coupland VA, Kitzinger S (1990) Expectations, experiences and psychological outcomes of childbirth: a prospective study of 825 women. Birth 17(1): 15-24

Hatem M, Sandall J, Devane D et al. (2008) Midwife-led versus other models of care for childbearing women. Cochrane Database of Systematic Reviews, Issue 4. Chichester: John Wiley & Sons

Hodnett E, Downe S, Edwards N, et al. (2010) Alternative versus conventional institutional settings for birth. Cochrane Database of Systematic Reviews, Issue 9. Chichester: John Wiley & Sons

Hodnett ED, Stremler R, Weston JA, et al. (2009) Re-conceptualizing the hospital labor room: the Place (Pregnant and Laboring in an Ambient Clinical Environment) pilot trial. Birth 36(2):159-66

Hodnett ED, Hatem M, Sandall J, et al. (2008) Continuity of caregivers for care during pregnancy and childbirth. Cochrane Database of Systematic Reviews, Issue 4. Chichester: John Wiley & Sons

Hodnett ED (2000) Continuity of caregivers for care during pregnancy and childbirth. Cochrane Database of Systematic Reviews 2000, Issue 1. Chichester: John Wiley & Sons

Hundley V, Cruikshank F, Lang G, et al. (1994) Midwife managed delivery unit: a randomised controlled comparison with consultant led care. British Medical Journal 309(6966): 1400-1404

Kirkham MJ (1986) A feminist perspective in midwifery. In Webb C (ed.) Feminist practice in women’s health care. Chichester: John Wiley

Lock L, Gibb H. (2003) The Power of Place. Midwifery 19(2): 132-139
McVicar J, Dobbie G, Owen-Johnston L, Jagger C, et al. (1993) Simulated home delivery:

a randomised control trial. British Journal of Obstetrics and Gynaecology 100(4): 316-33
National Institute of Clinical Excellence (NICE) (2007) Intrapartum care: management and delivery of care to women in labour. London: NICE

The Royal College of Midwives (RCM) (2008) Standards for birth centres in England: a standards document. London: RCM

Simkin P (1992) Just another day in a woman’s life? Part 2 Nature and consistency of women’s long-term memories of their first birth experiences. Birth 19(2): 64-81

Birth under water – Michel Odent

Michel Odent’s groundbreaking report “Birth Under Water” that was published in the Lancet in December 1983 is widely regarded as the seminal moment in time when the use of water for labour and birth entered our consciousness.

I’d personally like to thank Michel for being the inspiration that led me to begin to create and develop water birth pools in 1987 and for facilitating the birth of my son Theo at home in 1988.

Keith Brainin – Founder & Director Active Birth Pools

Birth under water – Michel Odent

Originally published in the Lancet: 1983

Centre Hospitalier Général de Pithiviers, PIthiviers 45300, France

The 100th birth under water in our hospital in June provided my team with an opportunity to summarise our experience of the use of water in an obstetric unit.

Since a report on birth under water in 1805,1 the subject has been rarely broached in the medical literature.

In Pithiviers, a hospital which is, in other respects, a conventional state hospital,2 a small pool has been installed close to the homely birthing room.

This pool is large enough (2m in diameter) and deep enough (about 0.7m) to make it easy for a woman in it to change her posture.

Many parturients feel and irresistible attraction to water. We don’t advise women to try the pool; we simply offer the pool as a possibility.

The water is ordinary mains tap water, at a temperature of 37 °C. The water is not sterilized, and contains no chemicals or additives on any sort.

We tend to reserve the pool for women who are experiencing especially painful contractions (lumbar pains, in particular), and where the dilation of the cervix is not progressing beyond about 5cm. In these circumstances, there is commonly a strong demand for drugs.

In most cases, the cervix becomes fully dilated within 1 or 2 hours of immersion in the pool, especially if the lights are dimmed.

It is possible to check the fetal heartbeat regularly with a small ultrasound stethoscope or with a traditional obstetrical stethoscope. Most women choose to leave the water in the second stage.

We believe that the warm pool facilitates the first stage of labour because of the reduction of the secretion of nor-adrenaline and other catecholamines; the reduction of sensory stimulation when the ears are under water; the reduction of the effects of gravity; the alteration of nervous conduction; the direct muscular stretching action; and peripheral vascular action.

Other factors, however, are difficult to rationalise. We have found, for example, that the mere sight of water and the sound of it filling the pool are sometimes sufficient stimuli to release inhibitions so that a birth may occur before the pool is full.

We have observed that water seems to help many parturients reach a certain state of consciousness where they become indifferent to what is going on around them.

Although nearly all the women who enter the pool leave it before birth, the process of delivery can sometimes be so extraordinarily fast under water, that some parturients do not leave the pool at the second stage.

Birth under water is therefore not exceptional in our unit, although it may not be intentional. During the second stage, immersion in warm water seems to help women to lose inhibitions. Most women cry out freely during the last contractions.

When the birth happens under water, the newborn infant is brought gently to the surface and placed in the mother’s arms. This is always done within seconds but without rushing (I am present at the pool for every underwater delivery).

Our experience confirms that the newborn’s first breathing is triggered by contact with the air and the sudden difference in temperature.

There is no risk of inhalation of water. It is useful to remember that in the human species carotid chemoreceptors are thought to be insensitive at birth, and very likely play no part at the time of the first cry. 3,4,5 Only 2 newborn infants out of 100 needed suction of the upper respiratory tract and a short period of manual ventilatory support.

At the time of first contact, most mothers are in a vertical position, kneeling in the water.  They hold the baby in their arms in such a way that skin-to-skin and eye-to-eye contact are as perfect as possible.

An early demonstration of the rooting reflex is almost the rule, and a first sucking 20 min after the birth is common.

Water seems to facilitate the development of the mother-infant relationship. We cut the umbilical cord and help the mother leave the pool just before expulsion of the placenta.

We consider that there might be a risk of water embolism if the mother were to stay in the pool after this time. In 100 underwater deliveries there were 2 manual removals of placenta (our general rate is less than 1%).

All the presentations were cephalic. In breech presentations, our strategy is to use the first stage as a test before deciding on either a vaginal delivery or a caesarian section: in these cases we prefer not to interfere with drugs or with a bath.

Among the 100 women who gave birth underwater, there were 43 primipara, 37 secundiparas, 14 para 3, 2 para 4, one para 5, one para 6, and one para 7.

The youngest was 19 and the oldest was 43. The average age was 28. The lowest birth weight was 2.15kg and the highest was 4.40 kg, we did not perform any episiotomies.

All the tears (of which there were 29) were first degree. We had no infectious complications, even where the membranes were already broken.

There were no perinatal deaths. One infant was transferred to a paediatric unit one day after the birth with groaning and respiratory failure, symptoms which were diagnosed as subarachnoid haemorrhage after delivery in the posterior position at 37 weeks.

Only one infant was jaundiced and required phototherapy (15mg/dl bilirubin on the second day). One of the infants born under water died suddenly some weeks later, although it was previously considered to be perfectly healthy.

We have found no risk attached either to labour or to birth under water, and in any hospital where a pool is in daily use, a birth under water is bound to happen now and then.

Compared with the supported squatting position in the birthing room, we have found that the end of the second stage of labour can be more difficult under water, particularly for primipara, but immersion during the second half of the first stage of labour is helpful, particularly for parturients having painful and insufficient contractions.

It should be possible for any conventional hospital to have a pool situated close to the birthing room and operating theatre.

The use of warm water during labour requires further research, but we hope that other experience would confirm that immersion in warm water is an efficient, easy, and economical way to reduce the use of drugs and the rate of intervention in parturition.



1. Embry M. Observation sur un accouchement terminé dans le bain. Ann Soc Méd Prat Montpellier 1805; 5: 13.

2. Gillett J. Chilbirth in Pithiviers, France. Lancet 1979; ii: 894-96.

3. Girard F, Lacaisse A, Dejours P. Lestimulus O 2 ventilatoire à la période néonatale chez l’homme. J Physiol (Paris) 1960; 52: 108-09.

4.  Purves MJ. The effects of hypoxia in the newborn lamb before and after denervation of the carotid chemoreceptors. J Physiol 1966; 185: 60-77.

5.  Purves MJ. Chemoreceptors and their reflexes with special reference to the fetus and newborn. J Devl Physiol 1981;  3: 21-57.


Diving in: a dip in the water for labour and birth policy debate

Megan Cooper RM, BHSc (Honours), Jane Warland RM, PhD Helen McCutcheon RM, PhD.


Water immersion for labour and birth is becoming an increasingly attractive option for women.

However, with what has been described as a paucity of research, water immersion policies appear to lack the evidence to ensure confidence in their use, safety in their implementation and importantly, acknowledgement of women’s autonomy to utilise water for labour and birth irrespective of their perceived ‘risk’.

In touching on the difficulties experienced by maternity care providers working within a system largely dominated by a ‘risk adverse’ paradigm, the following paper will highlight the shortfalls of research surrounding water immersion for labour and birth and the difficulties of utilising policies informed almost entirely by this research.

The current paucity of rigorous evidence and the difficulties faced by maternity care providers facilitating the option, highlights that greater emphasis needs to be placed on gaining a substantial evidence-base to inform future water immersion polices with more weight given to both observational data and anecdotal experience.

Future research should focus on both quantitative and qualitative aspects of water use for labour and birth to ensure that policies incorporate the required risk/benefit analysis, the opportunity for shared and informed decision-making and ultimately, the facilitation of woman-centred care.

Should we throw out the bath water?

For many women water immersion (WI) during labour and birth is an attractive and sought after option of care.

Despite the availability of literature surrounding WI for labour and birth many argue that high quality research with which to measure risks and benefits is still lacking.

As the option has become increasingly available, the development of policy to guide and inform care providers in the safe practice of WI for labour and birth has become necessary.

Consequently, policies appear to have been derived from what some describe as a less than substantive evidence-base (Cluett and Burns, 2009).

This has elicited debate as to whether the practice itself and therefore the policies currently informing the practice reflect the required foundational evidence to fulfill the ideal of evidence-based practice.

In touching on the current difficulties experienced by care providers working within in a ‘risk averse’ system the following paper will briefly explore WI for labour and birth, highlight the perceived shortfalls of research pertaining to its practice and discuss some of the difficulties of undertaking research at the level that many believe is required.

The role of qualitative research in informing the practice of labour and birth in water will also be examined with particular reference to the goal of woman-centred care and the need for policy that is reflective of a holistic evidence-base and supportive of women’s experience, satisfaction and choice.

The practice of water immersion for labour and birth

Despite common belief, WI for labour and birth is not a new phenomenon, with history dating back to the Egyptian Pharaohs and the Minoans of Crete (Mackey, 2001). In the 1960’s, Igor Charkovsky, a Russian midwife, began experimenting with the use of water for labour and birth after realising the positive physical and physiological effects of WI (Houston, 2010).

The 1980s saw Michel Odent, a well-known French Obstetrician and arguably the pioneer of modern water birth, establish the first birthing unit allowing women access to baths during labour, many of whom also went on to birth in water

(Houston, 2010). His observations and documented accounts of witnessing women immerse themselves in warm water allowed him to become a major influential figure in the global water birth movement and in the education of practitioners who facilitate the option of WI.

The advantages and benefits of WI during labour and birth have for the most part, not been thoroughly investigated through rigorous research.

Documented benefits include reductions in pharmacological pain relief (Eberhard et al., 2005, Otigbah et al., 2000, Benfield et al., 2001, Cluett and Burns, 2009), reduced blood loss and perineal trauma (Cluett and Burns, 2009) as well as facilitation of dysfunctional labour (Benfield et al., 2010, Cluett et al., 2004).

It has long been held that water immersion facilitates ‘normal’ birth and the latest prospective and descriptive cross sectional research findings provide support for this belief (Burns et al., 2012, Dahlen et al., 2012).

Burns et al. (2012) found that there was a higher frequency of spontaneous birth in nulliparas and greater rates of normal birth in both nulliparous and multiparous women when water was used during labour and/or birth. More specifically, of the 8924 participants almost 90 percent had a spontaneous birth and of these 5192 (58.3%) of women birthed in water.

Further support for benefits of water use come from Dahlen et al. (2012). They found in their Australian descriptive cross sectional study that women birthing in water had lower rates of major perineal trauma and PPH ≥ 500 milliliters when compared with those who used a birth stool on land.

Improved APGAR scores at five minutes were also noted for babies born into water compared to those whose mothers birthed in a semi-recumbent position on land although the authors note that they are unsure as to whether a semi- recumbent position was favoured by practitioners when there were fetal concerns, thereby potentially impacting on the results.

However, what is perhaps most important in terms of these findings is that there were no documented increased adverse outcomes for mothers who utiliszed water during labour and birth nor were there statistically significant increases in unfavourable outcomes for babies born into water.

Anecdotal experience supports these benefits further, with women suggesting greater levels of satisfaction, sense of autonomy and care providers observing less use of pharmacological pain relief and the facilitation of the fourth stage of labour, particularly in the initiation of breastfeeding.

Qualitative researchers have also found that women who birth in water feel protected, safe, relaxed and in control (Benfield et al., 2010, Maude and Foureur, 2007, Benfield, 2002).

For example, one New Zealand interpretive study, conducted by Maude and Foureur (2007), highlighted that WI provided a ‘sanctuary’ or environment whereby women felt protected and sheltered from intervention and interference. Participants also voiced a reduction in the fear of the birthing process and pain.

For many maternity care providers, water use for labour and birth is viewed as a method of providing women an alternative method of pain relief, ease of position changes and relaxation (Gilbert and Tookey, 1999, Meyer et al., 2010, Maude and Foureur, 2007, Woodward and Kelly, 2004, Stark and Miller, 2009).

Although evident throughout the literature, the observation and experience of maternity care providers is often challenged against minimal scientific proof, which to date, is still not entirely definitive.

Conversely, many continue to challenge the use of water for labour and birth claiming that it is neither normal nor natural for land living mammals to birth into water and that there exist too many associated ‘risks’ and adverse outcomes to mother and infant (Kassim et al., 2005, Mammas and Thiagarajan, 2009, Carpenter and Weston, 2011, Pinette et al., 2004).

The most recent published adverse outcomes pertaining to the use of water immersion during labour and birth come from Soileau et al. (2013) and Menakaya et al. (2012). Soileau et al. (2013) documents a neonatal infection and subsequent neonatal demise post a home water birth attributed to a maternal diarrheal infection in the week prior to birth. The infection believed to have been transmitted to the neonate after the mother defecated in the bath during labour.

This provides justification and support for the use of policy and/or guidelines in guiding practitioners in the facilitation of the option. Furthermore, its draws attention to the knowledge and understanding practitioners must attain in order to make decisions that ensure both maternal and neonatal wellbeing and safety when water is used.

Although Menakaya et al. (2012) did not assess maternal or neonatal infections in their retrospective design of 216 Australian women birthing in water, they noted that babies born into water showed a statistically significant difference in APGAR scores less than or equal to seven at one minute and as well as admission to Special Care Nursery (SCN) post birth in the water birth group.

Interestingly, three of the neonates transferred to SCN were admitted for feeding difficulties, issues which cannot be definitely linked to water immersion, one was admitted post a mild shoulder dystocia which presumably required the woman to be evacuated from the bath prior to birth and one for meconium aspiration, suggesting the presence of meconium which is commonly cited contraindication to birthing in water.

The remaining infants were admitted for resuscitation and an apneic event, which are also not unique to infants born in water.

One infant in the control group was admitted to the SCN and was transferred for respiratory distress requiring the longest stay of all infants admitted to the SCN. These findings are dissimilar to those of Mollamahmutoglu et al. (2012) who found no instance of neonatal infection and no significant difference in admission to the Neonatal Intensive Care Unit (NICU) when comparing infants who were born in water with those who were not. These findings are indicative of the inconsistent and contradictory findings pertaining to the use of water for labour and birth across the literature.

As a result, empirical research has failed to provide a definitive risk/benefit analysis relating to WI for labour and birth particularly in terms of maternal and neonatal infection, neonatal SCN/NICU admission, perineal trauma and the incidence of neonatal drowning and water embolism, as examples.

Furthermore, the ongoing reference to ‘potential’, ‘possible’ and ‘theoretical’ risks throughout the literature as well as throughout policy and guideline documents creates difficulty and uncertainty as to what actually constitutes risk and what is deemed as safe when WI is utilised for labour and/or birth (Kvach and Martonffy, 2012, Mackey, 2001, Pinette et al., 2004).

Watering down practice

Maternity care providers aim as far as possible, to deliver care which is women- centered (Carolan and Hodnett, 2007). Woman-centered care (WCC) incorporates the requirement of a woman making informed choices about all aspects of her care through the sharing of information (Leap, 2009).

Maternity care providers hold information that is vital to the woman but given the need to work within protocols and guidelines, may at times provide information to meet institutional and personal expectations and commitments resulting in what Carolan and Hodnett (2007) describe as “rule following and avoidance of responsibility”.

Although not necessarily a deliberate attempt to limit the information and options available to women, difficulties can arise as maternity care providers walk the fine line between meeting obligations as the woman’s advocate and the demands of institutional policies, guidelines and regulations.

Consequently care providers may forsake their role as the woman’s advocate, and instead support an environment that fosters informed compliance (Carolan and Hodnett, 2007).

Unfortunately the ideal of woman-centredness is often relinquished particularly as birth has become viewed a process that requires management and medical influence (Kitzinger, 2006, Davis-Floyd, 2001).

The burden of ‘proof’ and necessity of evidence to support or refute ‘alternative’ options irrespective of women’s requests and subjective knowingness that they work (Klein et al., 2006) has been significant in the debate surrounding water immersion for labour and birth.

Many of the benefits that water provides the labouring and birthing woman are also what may deter care providers from offering it as an option. Women and care providers alike, have suggested that water provides safety, sanctuary and distance from the rest of world allowing women a sense of control and ownership over their labour and birth (Maude and Foureur, 2007). However, this protection from intervention and intrusion

ultimately means that the contemporary methods of monitoring and gauging progress are no longer as accessible or practical. For many practitioners the inability to monitor and assess women as they normally would results in fear, not only of litigation and ‘what if’s’ (Garland, 1919), but also of the practice itself.

Combatting fear and anxiety could be as easy as encouraging care providers to witness women using water during labour and birth, but opinion and bias in disfavour of water immersion demands the current ‘gap’ in research be bridged.

Furthermore, ethical practice calls for practitioners to dissociate personal bias and views from their practice to ensure women’s autonomy and ability to exercise choice are not downplayed or absent in the facilitation of care (ANMC, 2008, ANMC et al., 2008).

This issue is further complicated by the political climate within which maternity care now exists. Despite many care providers supporting the implementation and practice of WI for labour and birth and having the capacity and accreditation to facilitate the practice, they may be restricted by the lack of institutional resources and support (Garland, 2011) and most commonly, policy that is derived from an aversion of risk and research that has yet to determine with any certainty the safety of using water for labour and birth.

WI for labour and birth, despite putting what feels like an ‘alternative’ slant on care, has the potential as a practice and option of care, to assist care providers such as midwives to re-recognize normal physiological birth and subsequently work towards fulfilling the ultimate goal of woman-centred care.

A drought of evidence?

Water birth, in particular, is frequently associated with perceived risks and dangers and for this reason its use continues to be challenged relative to safety implications for mother and infant as has previously been discussed (Pinette et al., 2004, Kvach and Martonffy, 2012).

The conundrum is yet to be resolved particularly given the perceived paucity of definitive evidence. Yet the option is becoming increasingly demanded and therefore available and as a result, policies are in place to guide care providers in its facilitation, which are probably based (at least in part) on this limited evidence.

Although a number of attempts have been made to undertake research at the ‘gold’ standard, randomised controlled trials (RCTs) examining WI for labour and birth have suffered from less than optimal sample sizes, selection bias or poorly controlled confounding factors in groups of low risk women who are usually highly passionate and motivated (Woodward and Kelly, 2004, Schroeter, 2004, Cluett and Burns, 2009).

This is evident in the latest Cochrane review that included only 12 suitable studies, and of these, only three examined the use of water during second stage of labour (Cluett and Burns, 2009). Further to this there is currently no population level data being collected anywhere in the world about outcomes of WI nor even how many women choose to use WI in labour and/or birth in water (Pinette et al., 2004).

Undertaking the recommended research on WI and birth particularly such as the RCT suggested by Davies (2010) is complicated given that randomising for such a study brings about ethical and moral concerns.

Hendrix et al. (2009) found this to be the case in their Dutch questionnaire-based study assessing women’s reasons for not participating in an RCT investigating home birth versus hospital birth. Eighty-four women indicated that they did not participate due to a concern that they would be randomised to the ‘wrong’ group.

Woodward and Kelly (2004) attempted to overcome women’s reluctance to participate in their pilot RCT comparing water birth with land birth by including a ‘preference arm’. Their results indicated there were no significant difference noted between women who were randomised and those who chose the ‘preference arm’ and therefore concluded that women would be happy to be randomised in future and similar trials.

However, criticism of this RCT highlights that their sample size was too small and therefore underpowered to determine safety, particularly given that only 10 women birthed in water. Further to this, Keirse (2005) challenges the validity and generalisability given the ‘preference arm’ and the bias that meant only 20 of the 60 women who had a strong preference for one of the two options, were allocated to their preferred option.

Subsequently, randomisation of women to options of care, which elicit both emotive and somewhat passionate views, such as the use of WI in labour and birth, is not ethically or practically feasible particularly where recruitment of large numbers would be required to determine with any certainty the morbidity and mortality of the intervention.

The proposed undertaking of this type of randomised research is further complicated by inconsistency across institutional policies in addition to funding, necessary infrastructure and available accredited staff (Garland, 2011).

Not only does this make it difficult to allow for the option and implementation of WI for labour and birth but it also inadvertently contributes to the lack of evidence in that accessibility is limited and therefore data on resulting outcomes, scarce. Furthermore, where it is consistently highlighted that high quality evidence is deficient, the question must be asked: who or what is informing the policies already in existence?

Initiating a wave of change

It is consistently highlighted that there is insufficient data to inform the practice of labour and birth in water, but is this really the case? It is clear that there is a paucity of evidence in terms of empirical investigation however volumes of anecdotal experience and observational data are available suggesting that water has significant and undeniable benefits to the women, and arguably to the baby.

Despite its availability, little weight is given to this valuable information, information that could be informing the movement forward and providing direction for future investigation of WI for labour and birth.

There is no denying that greater high level research would be advantageous to providing a definitive set of benefits and risks and therefore, greater insight into the relative safety of WI for labour and birth. However, is a RCT the right option?

The suggestion that rigorous evidence is needed to inform policies and guidelines with confidence and reliability could be attributed to what has been termed the ‘medicalisation’ of pregnancy and birth (Brubaker and Dillaway, 2009, Benoit et al., 2010) particularly where the measure of risk is at the forefront of maternity care facilitation.

However, in a risk-averse climate, adverse events whether recognised through well-constructed studies, auditing or anecdotal accounts, are generally the first to be documented so as to prompt review of practice.

Despite this, a search of the literature surrounding WI for labour and birth highlights very few documented adverse outcomes at any level of evidence and of those that are documented; the outcomes cannot always be definitively attributed to the use of water (Pinette et al., 2004, Cluett and Burns, 2009, Byard and Zuccollo, 2010).

What are readily available are anecdotal and observational accounts that suggest that WI has extensive benefits, not only to the woman but also to birth outcomes. It could therefore be argued that quantitative research alone is insufficient to provide answers to myriad of complexities, questions and queries relating to the practice of WI for labour and birth and therefore, insufficient when informing policies particularly where women choose to exercise self-determination and choice irrespective of their perceived risk.

Freeman and Griew (2007) touch on this in their review of one WI policy and its development. Their findings suggest that policy could further be enhanced by placing weight on the views and experiences of consumers and addressing the importance of informed and shared decision making.

This calls for attitudinal change not only to facilitate care that is woman-centred but also to ensure that women’s autonomy is factored into the development and implementation of policies underpinning practice.

The significance and value of qualitative evidence is slowly being realised, particularly in maternity care where WCC is the ideal. Despite this, empirical evidence is still commonly viewed as more rigorous and therefore more reliable.

This is none too clear in the hierarchies of evidence that fail to give weight to qualitative investigation (Spiby and Munro, 2009). However, as health care moves towards patient-centred models, or woman-centredness (Leap, 2009), as is the case in maternity care, there is the need for increasing weight to be also placed on experience and opinion particularly surrounding policy formation and care facilitation.

In light of this, a multi-faceted evidence-based approach to policy development and implementation of WI for labour and birth is likely to be advantageous.

However, before recommendations can be made, a critical analysis of existing policies and their development should occur in order to highlight whether the so-called scarcity of evidence poses difficulties for those involved in WI policy formation and to what extent policy facilitates and/or restricts water use practice and more importantly, women’s autonomy.

Pooling for the future

This paper has touched on the many shortfalls of WI research to date as well as foreseeable difficulties of future research surrounding WI for labour and birth. Future research requires greater emphasis on both the quantitative and qualitative aspects of water use for labour and birth to ensure that policies incorporate both the risk/benefit analysis as well as the opportunity for shared and informed decision-making.

This includes greater exploration of the experiences and perceptions of women and importantly, an examination of current WI policies to determine how they are informed and developed and to what extent they facilitate the practice and support women’s autonomy.

Not only is there the potential for this all-encompassing research to assist maternity care providers in working with autonomy as practitioners and ensuring their ability to advocate for women but there is also the potential for the use of water for labour and birth to have positive outcomes in a system that has an ever increasing rate of intervention and deviation from what can be both a normal and natural process.


ANMC 2008. Code of Professional Conduct for Midwives in Australia, Dickson, ANMC.
ANMC, ACM & ANF 2008. Code of Ethics for Midwives in Australia, Dickson, ANMC.
BENFIELD, R. 2002. Hydrotherapy in labor. J Nurs Scholarsh, 34, 347-52.
BENFIELD, R., HERMAN, J., KATZ, V. L., WILSON, S. P. & DAVIS, J. M. 2001. Hydrotherapy in labor. Research in Nursing & Health, 24, 57-67.
BENFIELD, R., HORTOBÁGYI, T., TANNER, C., SWANSON, M., HEITKEMPER, M. & NEWTON, E. 2010. The Effects of Hydrotherapy on Anxiety, Pain, Neuroendocrine Responses, and Contraction Dynamics During Labor. Biological Research for Nursing, 12, 28-36.
BENOIT, C., ZADOROZNYJ, M., HALLGRIMSDOTTIR, H., TRELOAR, A. & TAYLOR, K. 2010. Medical dominance and neoliberalisation in maternal care provision: The evidence from Canada and Australia. Social science & medicine, 71, 475-481.
BRUBAKER, S. J. & DILLAWAY, H. E. 2009. Medicalization, natural childbirth and birthing experiences.Sociology Compass, 3, 31-48.
BURNS, E. E., BOULTON, M. G., CLUETT, E., CORNELIUS, V. R. & SMITH, L. A. 2012. Characteristics,Interventions, and Outcomes of Women Who Used a Birthing Pool: A Prospective Observational Study. Birth.
BYARD, R. W. & ZUCCOLLO, J. M. 2010. Forensic issues in cases of water birth fatalities. Am J Forensic Med Pathol, 31, 258-60.
CAROLAN, M. & HODNETT, E. 2007. ‘With woman’ philosophy: examining the evidence, answering the questions. Nursing Inquiry, 14, 140-52.
CARPENTER, L. & WESTON, P. 2011. Neonatal respiratory consequences from water birth. J Paediatr Child Health.
CLUETT, E. & BURNS, E. 2009. Immersion in water in labour and birth. Cochrane Database Syst Rev, CD000111.
CLUETT, E., PICKERING, R., GETLIFFE, K. & SAUNDERS, N. 2004. Randomised controlled trial of labouring in water compared with standard of augmentation for management of dystocia in first stage of labour. BMJ, 328, 314.
DAHLEN, H. G., DOWLING, H., TRACY, M., SCHMIED, V. & TRACY, S. 2012. Maternal and perinatal outcomes amongst low risk women giving birth in water compared to six birth positions on land. A descriptive cross sectional study in a birth centre over 12 years. Midwifery.
DAVIES, M. 2010. Water births and the research required to assess the benefits versus the harms. Journal of Paediatrics and Child Health.
DAVIS-FLOYD, R. 2001. The technocratic, humanistic, and holistic paradigms of childbirth. International Journal of Gynecology & Obstetrics, 75, S5-S23.
EBERHARD, J., STEIN, S. & GEISSBUEHLER, V. 2005. Experience of pain and analgesia with water and land births. Journal of Psychosomatic Obstetrics and Gynecology, 26, 127-133.
FREEMAN, L. M. & GRIEW, K. 2007. Enhancing the midwife-woman relationship through shared decision making and clinical guidelines. Women Birth, 20, 11-5.
GARLAND, D. 1919. Waterbirth: An attitude to care, Books for Midwives Pr.
GARLAND, D. 2011. Water birth: a way of enhancing and promoting normality. Promoting Normal Birth:Research, Reflections and Guidelines. 1st ed.: Fresh Heart Publishing.
GILBERT, R. E. & TOOKEY, P. A. 1999. Perinatal mortality and morbidity among babies delivered in water:surveillance study and postal survey. BMJ, 319, 483-7.
HENDRIX, M., VAN HORCK, M., MORETA, D., NIEMAN, F., NIEUWENHUIJZE, M., SEVERENS, J. & NIJHUIS, J. 2009. Why women do not accept randomisation for place of birth: feasibility of a RCT in The Netherlands. BJOG, 116, 537-42; discussion 542-4.
HOUSTON, J. 2010. Exploring the theories around use of water for labour and for birth. MIDIRS Midwifery Digest, 20, 343-347.
KASSIM, Z., SELLARS, M. & GREENOUGH, A. 2005. Underwater birth and neonatal respiratory distress. BMJ, 330, 1071-2.
KEIRSE, M. J. 2005. Challenging water birth — how wet can it get? Birth, 32, 318-22.
KITZINGER, S. 2006. Birth crisis, Routledge.
KLEIN, M. C., SAKALA, C., SIMKIN, P., DAVIS‐FLOYD, R., ROOKS, J. P. & PINCUS, J. 2006. Why do women go along with this stuff? Birth, 33, 245-250.
KVACH, E. & MARTONFFY, A. I. 2012. Are there any risks to a water birth?
LEAP, N. 2009. Woman-centred or women-centred care: does it matter? British Journal of Midwifery, 17, 12-16.
MACKEY, M. M. 2001. Use of water in labor and birth. Clin Obstet Gynecol, 44, 733-49.
MAMMAS, I. N. & THIAGARAJAN, P. 2009. Water aspiration syndrome at birth – report of two cases. J Matern Fetal Neonatal Med, 22, 365-7.
MAUDE, R. M. & FOUREUR, M. J. 2007. It’s beyond water: Stories of women’s experience of using water for labour and birth. Women and Birth, 20, 17-24.
MENAKAYA, U., ALBAYATI, S., VELLA, E., FENWICK, J. & ANGSTETRA, D. 2012. A retrospective comparison of water birth and conventional vaginal birth among women deemed to be low risk in a secondary level hospital in Australia. Women Birth.
MEYER, S. L., WEIBLE, C. M. & WOEBER, K. 2010. Perceptions and practice of waterbirth: a survey of Georgia midwives. J Midwifery Womens Health, 55, 55-9.
UZUNLAR, Ö. & DILMEN, U. 2012. The effects of immersion in water on labor, birth and newborn and comparison with epidural analgesia and conventional vaginal delivery. Journal of The Turkish German Gynecological Association, 13, 45-9.
OTIGBAH, C. M., DHANJAL, M. K., HARMSWORTH, G. & CHARD, T. 2000. A retrospective comparison of water births and conventional vaginal deliveries. Eur J Obstet Gynecol Reprod Biol, 91, 15-20.
PINETTE, M. G., WAX, J. & WILSON, E. 2004. The risks of underwater birth. Am J Obstet Gynecol, 190, 1211-5.
SCHROETER, K. 2004. Water births: a naked emperor. Pediatrics, 114, 855-8.
SOILEAU, S. L., SCHNEIDER, E., ERDMAN, D. D., LU, X., RYAN, W. D. & MCADAMS, R. M. 2013. Case report: Severe disseminated adenovirus infection in a neonate following water birth delivery. J Med Virol, 85, 667-9.
SPIBY, H. & MUNRO, J. 2009. The development and peer review of evidence-based guidelines to support midwifery led care in labour. Midwifery, 25, 163-71.
STARK, M. A. & MILLER, M. G. 2009. Barriers to the use of hydrotherapy in labor. JOGNN: Journal of Obstetric, Gynecologic & Neonatal Nursing, 38, 667-675.
WOODWARD, J. & KELLY, S. M. 2004. A pilot study for a randomised controlled trial of water birth versus land birth. BJOG: An International Journal of Obstetrics and Gynaecology, 111, 537-545.



Sheila Kitzinger – Birth in Water: Just a Fad?

Originally published December 11, 2014

World-renowned social anthropologist and birth activist Sheila Kitzinger (1929-2015) was a strong advocate for birth in water, known as waterbirth.

A voice for the ability for every woman to choose, Sheila believed that waterbirth should be an option in mainstream maternity care.

May0042569. Daily Telegraph. Childbirth Guru Sheila Kitzinger for DT Weekend. Picture shows Sheila Kitzinger MBE, she is an author and social anthropologist specialising in pregnancy, childbirth and the parenting of babies and young children. Picture taken in her bedroom, she does most of her writing in her four poster bed. Location Standlake, Oxfordshire. Picture date 27/09/2012

In this piece for Birth Institute, Sheila outlined some of the myths surrounding the birth method, and provides evidence that, in fact, waterbirth is a safe, effective and empowering birthing option.

Learn how to support women through labor and delivery in water. Become a midwife!

Waterbirth is often discussed as if it were a novelty – and a dangerous one at that. It has been assumed to be something that “dropouts” and “weirdoes” choose, or that it is just a recent, passing phenomenon.

In truth, birthing in water is a safe and widespread practice among hospitals in the UK and Western Europe – including Switzerland, Italy, Spain, Portugal, Malta, Denmark, Norway and Finland.

Furthermore, most practices aren’t as new as we think (the Ostend Aquanatal Centre in Belgium has been going strong since the late 80s), and waterbirth practices are here to stay.

Birth in water is safe and effective

Swiss study reveals that when using a pool women require less analgesia, have a lower incidence of perineal trauma, and reduced blood loss at delivery.

NICE (National Institute for Health and Care Excellence) concludes that waterbirth ‘provides the safest form of pain relief’.

There is evidence that being in water improves uterine contractility and speeds dilatation.  So, awoman giving birth in water is less exposed to interventions, including artificial augmentation of uterine activity, and is more likely to feel happy about her birth experience afterwards.

Yet that may not only be due to the water.  Labouring women who give birth in water have more one-to-one care from a midwife they have come to know.

This, combined with a relaxed environment in which the pool is used, contributes to the positive results. More first time mothers have spontaneous births in a freestanding midwifery center or at home than those in hospital.

In the UK, the NHS (National Health Service) states that women should be able to use a pool if they wish, and recommends one be available for every thousand women.

This option has become part of mainstream maternity care, and approximately 75% of all hospitals in the UK have installed birthing tubs.

Many community midwives are eager to raise the homebirth rate, and portable pools, designed to be used by just one woman (to avoid cross-infection), are selling well.

Complicated waterbirthing pools are not necessary.

Chairs, stools and other contraptions restrict movement, and when a woman is immobilized she is more likely to need obstetric intervention.

Francoise Freedman of Birthlight in Cambridge suggests using a pool at home to explore yoga movements during pregnancy.

These include hip-openers, kneeling stretches, and those to prevent and ease back pain, and others for ribcage expansion and pelvic floor toning.

The warm water acting as a cushion also makes a comfortable space to practice perineal massage.

Waterbirth is here to stay

Midwives keen on home birth and waterbirth were once seen as dissidents and mavericks.

This has changed now – so much that in the UK, it is common to encourage women to choose to labour, and perhaps give birth, in water and in their own home.  Pregnant women and midwives are being empowered now.

Every midwife-run and staffed birth center for low risk women offers pools, and midwives are beginning to develop the skills to use them. There is a feast of research from which midwives can learn more.

Ethel Burns, Waterbirth Practitioner, Research Midwife and Midwifery Teacher, and I have drawn up recommendations for practice in a paper available from Oxford Brookes University (read it here).

Sheila Kitzinger (1929-2015) was a social anthropologist of birth and an advocate of home births.  She believed that women have the right to decide the place of birth and kind of care they prefer, and to make an informed choice, based on research and their own values.

Women suffering post-traumatic stress after birth would ring her for help, seeking the confidence to deal with it.  For years she worked with mothers and babies in prison and asylum centers.  She lectured all over the world and her books are published in 23 languages.

Exploring movements in Water

Sheila was a keen proponent of water birth.

Her wonderful article gives us examples of the type and range of movements natural to labour and birth that mothers explore in water.


The pool in the photos is an original Oval Portable Water Birth Pool circa 1987  – to my knowledge the first specially designed portable water birth pool ever produced.

Please click here for a copy of Exploring movements in water: