Cleaning and Care

Safety comes 1st!

Active Birth Pools  are Rated No.1 for water safety and infection control standards.

This is because the material we use (Ficore) is 5 x harder than other materials and is immune to the effects of disinfection with 10,000ppm hypo-chlorite.

Seamless one-piece construction and the absence of surface mounted metal work deny micro-organisms the environment they need to propagate.

Active Birth Pools Cleaning and Disinfection Guidelines

This is a two-step procedure – first cleaning of the pool and surround, then disinfection of the pool and surround.

  1. Prior to emptying the pool remove debris and larger particles from the water with a sieve to prevent it from blocking or obstructing the outlet.
  1. Use the standard infection control precautions (plastic apron, disposable gloves and eye protection) when cleaning the pool. Ensure the area is well ventilated.
  1. Cleaning – use a non-abrasive detergeant with non-abrasive sponge or cloth to thoroughly clean the pool. Ensure the tap is cleaned first, so as not to transfer micro-organisms from the “dirty” pool area to the cleaner tap region. Rinse well with warm water.
  1. Disinfecting – use chlorclean or similar hypochlorite disinfectant following the directions on the packet for mixing the solution to the correct concentration for disinfecting the birth pool and surround.  Do not use bleach as it is highly corrosive and could cause damage to the fittings.
  1. Apply the solution to the tap and spout prior to disinfecting the pool.
  1. There are 3 methods for disinfecting the pool that are commonly used in hospitals:

1) Fill the pool with cold water and add the requisite amount of disinfectant – leave for ten minutes.

The advantage of this method is that it is 100% effective but wasteful of water, time consuming and uses a large amount of disinfectant

2) Make up 2-3 litres of solution and pour it around the inside of the rim. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected.

3) Fill a spray bottle with disinfectant and thoroughly spray the surface of the pool and surround. Then use a new disposable mop or cloth to spread the disinfectant over the surface of the pool. Leave for ten minutes.

The advantage of this method is that it is economic in terms of time and cost but relies upon the person carrying out the task to ensure that 100% of the pools surface is disinfected

  1. Open the drain outlet and empty the pool of the disinfectant.
  1. Using cold water, rinse the tap then the pool to remove all traces of the disinfectant, to prevent any residue being left on the pool surface.
  1. Dry the entire surface of the pool using a new cloth or disposable mop head.
  1. Keep the drain outlet closed when not in use.

If you are duty flushing the taps with hot water/steam add a few inches of cold water to the pool first.

Damage resulting from higher water temperatures, steam cleaning or use of products not approved by Active Birth Pools will not be covered by our guarantee.

Protocols from hospitals using Active Birth Pools.

 

How to restore your old birth pool to pristine condition

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

http://www.amazon.co.uk/Waterline-Cleaning-removes-lines-cleaner/dp/B006DFD7VK

Related information:

 

Water Birth Safety Initiative

Hospitals in the United Kingdom began allowing women to use specially designed pools of water for labour and birth during the 1980’s.

The wide-spread popularity and acceptance of water birth pools as a standard part of the maternity care package necessitated the development of guidelines & regulations to define standards and ensure they’re met.

The United Kingdom Department of Health has published a panoply of water safety directives that apply to water birth pools.

Policies and recommendations set forth in the Water Birth Safety Initiative are based upon these publications.

The Water Birth Safety Initiative (WBSI) calls for development of international standards modelled on the UK’s so that women the world over can benefit from the use of water for labour and birth safeguarded from risk.

The WBSI calls for the implementation of stricter protocols and sets forth recommendations for equipment standards.

The guidelines set forth in the WBSI are intended to serve as a framework of standards for birth pool suppliers, hospitals and midwives to work with to establish  safe codes of practice.

Guidelines for Water Birth Pools Installed in Hospital

Water is more prone to bacteria growth after it leaves the public water distribution system and enters a building’s plumbing.

There it finds warmer temperatures, stagnation, and smaller pipes, valves and fittings.

Biofilm that forms on valves and fittings and pipe walls not only feeds bacteria but also protects them from the hot water and chlorine that typically would kill free-floating organisms.

Large systems with complex piping networks — like those found in hospitals, hotels and large apartment buildings — are especially prone to bacteria growth.15

Water Birth Pools that are installed in hospitals have the benefit of being maintained by staff to ensure that protocols are established, met and maintained.

Consideration and due diligence with regard to the prospective purchase of water birth pools and the assessment of pools already in use needs to be taken to ensure that the associated plumbing and electrical systems meet relevant safety standards.

The United Kingdom’s Department of Health and National Health Service has an exemplary safety record achieved by establishing rigorous sets of guidelines and regulations for the design, installation, use and maintenance (cleaning/disinfection) of water birth pools.

In the UK water birth pools are classed as a Category Fluid 5 water risk which represents a serious health hazard due to the concentration of pathogenic organisms, radioactive or very toxic substances, e.g. containing faecal material or other human waste; butchery or other animal waste or pathogens.

Water Birth Pools must be installed in compliance with water regulations as set forth in The Water Supply (Water Fittings) Regulations 1999.11

The 7 sins of water safety

To ensure high standards are met it is strongly advised that you do not use a water birth pool that has any of these features:

  1. Overflow drains
  2. Internal water inlets
  3. Hand-held showers
  4. Systems with flexible hoses or extended pipes
  5. Integral or secondary plumbing systems
  6. Any type of recirculating or pumped water systems such as whirlpool, jacuzzi, spa, bubbling, filtering etc
  7. Heating systems

1) Overflow drains

Overflow drains harbour bacteria and can serve as a conduit for cross infection.

Regulations are very clear on this point – overflow drains should not be installed on water birth pools as they constitute a constant infection control risk much more significant than the possible risk of damage due to water overflowing.11,12

Some digital taps on the market can be set for filling time thus obviating the risk of the pool overflowing.

2) Internal water inlets

Internal water inlets act in place of taps to fill the pool.

They are installed on the inside of the pool just above the water line and connected with pipework to a thermostatic valve.

If the water level rises there is a high risk of back flow enabling bacteria to enter the system creating a risk of cross infection.7

3) Handheld showers

Handheld showers present a significant infection control risk due to the fact that they can fall in the pool and be contaminated with bacteria that could breed and be passed on next time the shower is used.

Department of Health regulations clearly stipulate that handheld showers and bath/shower mixers are not installed for use with water birth pools. 13

Handheld showers present a Fluid Category 5 risk to the mains water supply.

It must not be possible to submerge the showerhead in the water due to risk of cross infection.

In order to comply with category 5 water regulations covering back siphonage, a class AUK3 air gap would be required, which generally prevents the use of handsets, unless there is a separate break tank installed in the hospital plumbing system.

4) Systems with flexible hoses or extended pipes

Systems that employ flexible piping, have branch pipes or hold stagnant water present a potential hazard and must not be used with water birth pools.

It is impossible to clean, disinfect or monitor these systems.

They have been proven to be a source of Legionella and Pseudomonas. 14

Weekly flushing recommendations recommended by the department of health cannot be executed with such systems, and the effectiveness of this cannot be monitored due to the inacessibility of the closed system.

5) Integral or secondary plumbing systems

Integral, secondary or proprietary plumbing systems are fitted to some water birth pools.

As these systems can employ flexible and non-flexible piping, overflow drains, handheld showers and are often pumped or recirculating they present a significant infection control risk and should be banned from use.

Regulations stipulate that water birth pools are filled from thermostatically controlled wall mounted mixer taps plumbed directly into the hospitals water supply with the minimum of pipework.

Not only do secondary or integral plumbing systems present unacceptable risks, they are impossible to clean, disinfect or monitor and therefore present an extremely high and unacceptable infection control risk.

They must not be present on pools used for labour and birth. 10

6) Recirculating or pumped water systems

Recirculating or pumped water systems such as whirlpool, jacuzzi, spa, bubbling, filtering etc. have the perfect environmental conditions to be a potential source for the growth of microorganisms, including legionella bacteria and must not be installed on water birth pools.

Water systems that are able produce aerosols represent the highest levels of risk.

Aerosols can be generated very easily when the water surface is broken -for example, by falling water droplets, splashing, or by bubbles breaking at the surface.

Once introduced to artificial water systems, Legionella can thrive in warm water (30 – 35 °C) and has been shown to be present on flexible seals and metal surfaces within plumbing systems used in domestic potable water supplies.

Inadequately maintained spa pools (birth pools with pumped or recirculating systems) provide ideal conditions to support the growth of legionellae and other microorganisms, which may then become aerosolised and subsequently inhaled.15


7) Heating systems

Heating systems for water birth pools are not necessary and present unacceptable infection control risks.7

There are two types of heating systems in use:

1. Recirculating system with a heat exchanger

Water is pumped out of the pool and through a heat exchanger and then flows back into the pool.

These systems present one of the highest infection control risks and should not be installed on a water birth pool under any circumstances. (covered by points 4, 5 and 6 above).

2. Electric heating systems

Similar to under floor heating found in homes do not present an infection control risk.

But, they do present an unacceptable health and safety risk and should therefore not be installed in water birth pools.

These systems consist of a network of cables embedded in the fabric of the birth pool that are attached to the power supply through a thermostat.

The heat is transmitted from the cables through the floor of the pool and then transferred to the water.

The inherent problem with these systems is that the water is relied on to take the heat away from the material.

If a woman remains motionless the heat becomes concentrated and a “hotspot” develops which can result in the woman being burned.

Recommendations

Plumbing for filling and emptying water birth pools should be simple, straight forward and kept to the minimum.

A set of taps (see below) mounted on the wall 15cm above the rim and a drainage system similar to that of a normal bath is all that is required.

Rim mounted taps present two areas of risk:

1. Women may hit their head on taps that are mounted on the rim of the pool causing injury.

In the throes of labour a woman is not as cognisant of her surroundings as she normally is.

She needs to be protected from the potential harm that could result from hitting her head or other part of her body on the spout.

2. Risk to the taps and pool caused by the labouring woman grabbing onto the spout for support could easily cause damage to the fitting or fabric of the pool.

Filling the birth pool

Water Birth Pools should be filled directly from the hospitals main water supply through a ¾ Thermostatic Mixing Valve (TMV).

To comply with UK National Health Service regulations the valve must have TMV3 approval for use in Healthcare and Commercial situations and certify that it conforms to the performance requirements of the Department of Health.16

To kill legionella and other bacteria, water in hospitals systems is heated to 60 – 80 °C.

Water temperature entering the birth pool should be limited by the TMV to 44 °C to prevent scalding.

The added benefit of using a TMV connected directly to the hospitals main water supply is that it can be set to automatically flush itself of stagnant water twice a day and be thermally disinfected periodically.

dsc_2965

The use of a TMV ensures a safe water supply.

Digital thermostatic mixing valves with enhanced thermal performance that incorporate these features are ideal:

1) Programmable control to accurately mix and maintain the temperature of the water flowing into the birth pool and limit the temperature of the water to 44 °C to prevent scalding.17

2) Programmable fill duration to fill the pool to the desired depth and then turn off.

This is important as water birth pools are not allowed to have overflow drains installed and this feature will prevent the pool from overflowing when unattended.

3) Programmable duty flushing to ensure that water does not stagnate within the tap and associated pipe work, effectively controlling the multiplication of legionella & other bacteria in infrequently used outlets.

Flushing duration is in line with HSE L8 recommendations.18

4) Programmable high-temperature thermal disinfection to destroy the proteins in viruses and bacteria and render them as dead or inert.

Thermal disinfection works by achieving a moist heat which is set at a specific temperature for a set amount of time.

Viruses and bacteria are very sensitive to heat and they will die if exposed to higher temperatures. 19

Emptying the Pool

Water from a birth pool needs to be treated as Fluid category 5 waste representing a serious health hazard due to the concentration of pathogenic organisms derived from fecal material or other human waste and emptied directly into the hospital’s waste water system.20

The pipework needs to have a trap or U bend fit as close to the waste/drain as possible.

The drainage fitting or waste should seal neatly into the drain.

The drainage fitting should be cleaned and flushed through with disinfectant and then dried as part of the cleaning protocol.

The waste should be kept closed when the pool is not in use.

There should be NO flexible pipe used in the drainage pipework.21

The waste should be remotely operated (i.e. pop up waste with rim mounted control) and of the best quality, preferably high-grade brass, to resist the corrosive action of chlorides and other disinfectants.

DSC_2915

End notes

The Water Birth Safety Initiative was conceived by Keith Brainin to motivate and enable birth pool suppliers and health care professionals to raise standards and implement protocols to make water birth safe.

References

[1] Healio – Infectious Disease News. (2014, December 26). Legionellosis death after water birth sparks call for stricter infection control protocols. http://www.healio.com/infectious-disease/practice management/news/online/%7Bfe352169-755d-4d21-9bb2-abb8ae209f89%7D/legionellosis-death-after-water-birth-sparks-call-for-stricter-infection-control-protocols

[2] Inquisitr. (2015, January 16). Oregon Water Birth Leaves Baby Disabled, Lawsuit Wants Labor Options Banned. http://www.inquisitr.com/1761136/oregon-water-birth-leaves-baby-disabled-lawsuits-wants-labor-options-banned/

[3] GOV.UK. Alert after Legionnaires’ disease case in baby, 2014. https://www.gov.uk/government/news/alert-after-legionnaires-disease-case-in-baby

[4] The Guardian. Legionnaires’ disease in baby is linked to heated birthing pool, June 17, 2014.http://www.theguardian.com/society/2014/jun/17/legionnaires-disease-heated-birthing-pool-baby-public-health

[5] Guidance from the  Water Regulations Advisory Scheme (WRAS) https://www.wras.co.uk/consumers/advice_for_consumers/what_are_the_water_regulations_/

[6] M.W. LeChevallier, 2003 World Health Organization (WHO). Conditions favouring coliform and HPC bacterial growth in drinking- water and on water contact surfaces. Heterotrophic Plate Counts and Drinking-water Safety. Edited by J. Bartram, J. Cotruvo, M. Exner, C. Fricker, A. Glasmacher. Published by IWA Publishing, London, UK. ISBN: 1 84339 025 6.

[7] www.gov.uk. Public Health England advice on home birthing pools, 2014.  https://www.gov.uk/government/news/public-health-england-advice-on-home-birthing-pools

[8] Health and Safety Executive. (2013). Legionnaires’ disease: Technical guidance [3.4], 2013. http://www.hse.gov.uk/pubns/priced/hsg274part3.pdf

[9] United Lincolnshire Hospitals NHS Trust UK. Cleaning, Disinfection and Sterilization Guidelines for Re-Usable Medical Devices 2010.
http://www.activebirthpools.com/wp-content/uploads/2014/05/Lincolnshire-CLEANING-DISINFECTION-AND-STERILIZATION-GUIDELINES-FOR-RE-USABLE-MEDICAL-DEVICES.pdf

[10] http://www.eurosurveillance.org. Case of legionnaires’ disease in a neonate following an home birth in a heated birthing pool. England, June 2014 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20857

[11] Water Regulations Advisory Scheme (WRAS). Fluid Categories. https://www.wras.co.uk/consumers/resources/glossary/fluid_categories/

[12] WHBN 00-10 Welsh Health Building Note. Part C: Sanitary assemblies2014, http://www.wales.nhs.uk/sites3/documents/254/WHBN%2000-10%20Part%20C.pdf

[13] Department of Health, Children, young people and maternity services. Health Building Note 09-02: Maternity care facilities, 2009.
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/147876/HBN_09-02_Final.pdf

[14] Freije, Matthew R. Some waterborne bacteria are tough, 2010. http://www.watertechonline.com/articles/some-waterborne-bacteria-are-tough

[15] Woolnough, Kevin. Legionella Expert Calls for Greater Vigilance, 2014. http://www.eurofins.co.uk/news-archive/legionella-expert-calls-for-greater-vigilance.aspx

[16] BEAMA. TMV Standards and regulations, 2013. http://www.beama.org.uk/en/product-areas/heating-hot-water–air-movement/thermostatic-mixing-valves/tmva-faqs-on-thermostatic-mixing-valves/tmv-standards-and-regulations.cfm

[17] Health and Safety Executive. Managing the risks from hot water and surfaces in health and social care, 2012. http://www.hse.gov.uk/pubns/hsis6.pdf

[18] Health and Safety Executive. Legionnaires’ disease The control of legionella bacteria in water systems, 2013. http://www.hse.gov.uk/pubns/priced/l8.pdf

[19] Health and Safety Executive. Managing legionella in hot and cold water systems. http://www.hse.gov.uk/healthservices/legionella.htm

[20] SMS Environmental – the water experts. Fluid Categories. http://www.sms-environmental.co.uk/fluid_categories.html.

[21] Nottingham University Hospitals NHS Trust. Legionella Management and Control Procedures, 2014.

Bibliography

  • Ashford and St. Peter’s Hospitals, Women’s Health and Paediatrics Division (Abbey Birth Centre). Operational Policy and Clinical Guide, 2014.
  • BASINGSTOKE AND NORTH HAMPSHIRE NHS FOUNDATION TRUST . CLEANING, DISINFECTION AND STERILISATION POLICY. Prod. Helen Campbell. BASINGSTOKE AND NORTH HAMPSHIRE, BASINGSTOKE AND NORTH HAMPSHIRE, 2010.
  • BEAMA. TMV Standards and regulations. 2013. http://www.beama.org.uk/en/product-areas/heating-hot-water–air-movement/thermostatic-mixing-valves/tmva-faqs-on-thermostatic-mixing-valves/tmv-standards-and-regulations.cfm (accessed 2014 йил 24-09).
  • Buckinghamshire Healthcare NHS Trust. Water birth and use of water in labour guideline. Prod. Miss G Tasker and Audrey Warren. 2013.
  •  Dekker, Rebecca. “Evidence on the Safety of Water Birth.” http://evidencebasedbirth.com/. 2014. http://evidencebasedbirth.com/waterbirth/ (accessed 2014 10-09).
  • Department for Environment, Food and Rural Affairs. Water Supply (Water Fittings) Regulations 1999 Guidance Document relating to Schedule 1: Fluid Categories and Schedule 2: Requirements For Water Fittings. 1999. http://archive.defra.gov.uk/environment/quality/water/industry/wsregs99/documents/waterregs99-guidance.pdf.
  • Department of Health. Children, young people and maternity services Health Building Note 09-02: Maternity care facilities. 2009.

—. “Health Building Note 00-09: Infection control in the built environment.” www.gov.uk. 2002. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/170705/HBN_00-09_infection_control.pdf (accessed 2014 6-12).

—. “Health Technical Memorandum 64: Sanitary assemblies.”  2006. http://www.wales.nhs.uk/sites3/documents/254/HTM%2064%203rded2006.pdf (accessed 2014 10).

—. “Water systems Health Technical Memorandum 04-01: Addendum” .2013. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/140105/Health_Technical_Memorandum_04-01_Addendum.pdf (accessed 01 2014-10).

 —. “Water systems Health Technical Memorandum 04-01: The control of Legionella , hygiene, “safe” hot water, cold water and drinking water systems”. 2006.

  • DH, Estates & facilities. Water systems Health Technical Memorandum 04-01: Addendum . Department of Health, Department of Health.
  • Elizabeth R Cluett, Ethel Burns. Immersion in water in labour and birth. 2009.http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD000111.pub3/abstract (accessed 2013 13-05).
  • Elyse Fritschel, Kay Sanyal, Heidi Threadgill, and Diana Cervantes. Emerging Infectious Diseases.CDC. Centers for Disease Control and Prevention. CDC. 2014. http://wwwnc.cdc.gov/eid/article/21/1/14-0846_article (accessed 2015 5-January).
  • Freije, Matthew R. Some waterborne bacteria are tough . 2010. http://www.watertechonline.com/articles/some-waterborne-bacteria-are-tough (accessed 2015 20-01).
  • GOV.UK. Alert after Legionnaires’ disease case in baby. 2014. https://www.gov.uk/government/news/alert-after-legionnaires-disease-case-in-baby (accessed 2014 3-12).
  • GOV.UK. Public Health England advice on home birthing pools. 2014. https://www.gov.uk/government/news/public-health-england-advice-on-home-birthing-pools (accessed 2014 03-August).
  • Healio – Infectious Disease News. Legionellosis death after water birth sparks call for stricter infection control protocols. 2014. http://www.healio.com/infectious-disease/practice-management/news/online/%7Bfe352169-755d-4d21-9bb2-abb8ae209f89%7D/legionellosis-death-after-water-birth-sparks-call-for-stricter-infection-control-protocols (accessed 2015 07-01).
  • Health and Safety Executive. Legionnaires’ disease The control of legionella bacteria in water systems. 2013. (accessed 2014 07-07).

—. “Legionnaires’ disease: Technical guidance.”  2013. http://www.hse.gov.uk/pubns/priced/hsg274part3.pdf (accessed 2014 20-10).

—. Managing legionella in hot and cold water systems. http://www.hse.gov.uk/healthservices/legionella.htm (accessed 2015 07-01).

—. “Managing the risks from hot water and surfaces in health and social care.”  2012. http://www.hse.gov.uk/pubns/hsis6.pdf (accessed 2014 20-11).

  •  Health Facilities Scotland. Consultation draft of SHTM 04-01 Water Safety for Healthcare Premises Part G: Operational Procedures and exemplar Written Scheme 2013. Health Facilities Scotland.
  •  Inquisitr. Oregon Water Birth Leaves Baby Disabled, Lawsuit Wants Labor Options Banned. 2015.http://www.inquisitr.com/1761136/oregon-water-birth-leaves-baby-disabled-lawsuits-wants-labor-options-banned/ (accessed 2015 16-01).
  •  Laura Franzin, Carlo Scolfaro, Daniela Cabodi, Mariangela Valera, and Pier Angelo Tovo. Legionella pneumophila Pneumonia in a Newborn after Water Birth: A New Mode of TransmissionOxford Journals, November 2001: 104.
  • Legionella Control. Birthing Pool Death Linked To Legionnaires disease. https://legionellacontrol.com/blog/166-birthing-pool-death-linked-to-legionnaires-disease (accessed 2014 27-11).
  •  Legislation.gov.uk. The Water Supply (Water Fittings) Regulations 1999.The National Archives. 1999. http://www.legislation.gov.uk/uksi/1999/1148/contents/made (accessed 2015 05-01).
  •  M.W. LeChevallier, World Health Organisation. Conditions favouring coliform and HPC bacterial growth in drinkingwater and on water contact surfaces . 2003.
  •  N Phin, T Cresswell, F Parry-Ford on behalf of the Incident Control Team. CASE OF LEGIONNAIRES’ DISEASE IN A NEONATE FOLLOWING A HOME BIRTH IN A HEATED BIRTHING POOL, ENGLAND, JUNE 2014.http://www.eurosurveillance.org. 2014. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20857 (accessed 2015 10-01).
  •  Nottingham University Hospitals. LEGIONELLA MANAGEMENT AND CONTROL PROCEDURES. May 8, 2014.
  • Rosanna A. Zanetti-Daellenbach, Sibil Tschudin, Xiao Yan Zhong, Wolfgang Holzgreve, Olav Lapaire, Irene Ho ̈sli. Maternal and neonatal infections and obstetrical outcome in water birth . Prod. Women’s University Hospital Basel. Spitalstrasse, Basel: European Journal of Obstetrics & Gynecology and Reproductive Biology , 2006 28-August.
  • SMS Environmental – the water experts. Fluid Categories. http://www.sms-environmental.co.uk/fluid_categories.html.
  • Takuhito Nagai, Hisanori Sobajima, and Mitsuji Iwasa. A fatal newborn case of Legionella pneumophila pneumonia occurring after water birth in a bathtub with an all day circulating system, June 1999 – Nagoya City.http://idsc.nih.go.jp/. 2000. http://idsc.nih.go.jp/iasr/21/247/de2474.html (accessed 2014 17-06).
  • Takuhito Nagai, Hisanori Sobajima, Mitsuji Iwasa, Toyonori Tsuzuki, Fumiaki Kura, Junko Amemura-Maekawa, and Haruo Watanabe. Neonatal Sudden Death Due to Legionella Pneumonia Associated with Water Birth in a Domestic Spa Bath. 2002.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154682/ (accessed 2014 3-12).
  • The Guardian. Legionnaires’ disease in baby is linked to heated birthing pool . 2014. http://www.theguardian.com/society/2014/jun/17/legionnaires-disease-heated-birthing-pool-baby-public-health (accessed 2014 18-June).
  • U.S. Department of Health and Human Services Centers for Disease Control and Prevention (CDC) Atlanta, GA 30333. Guidelines for Environmental Infection Control in Health-Care Facilities . 2003.
  • UNITED LINCOLNSHIRE HOSPITALS NHS TRUST. CLEANING, DISINFECTION AND STERILIZATION GUIDELINES FOR RE-USABLE MEDICAL DEVICES. Lincolnshire, 2010 January.
  • Water Regulations Advisory Scheme. Fluid Categories . https://www.wras.co.uk/consumers/resources/glossary/fluid_categories/ (accessed 2014 3-12).
  • which.co.uk. Having a water birth and using birth pools. http://www.which.co.uk/birth-choice/articles/using-water-in-labour.
  • Woolnough, Kevin. Legionella Expert Calls for Greater Vigilance. http://www.eurofins.co.uk/news-archive/legionella-expert-calls-for-greater-vigilance.aspx (accessed 2015 17-01).

Please feel free to distribute and share this document crediting  © K. D. Brainin (Active Birth Pools) 2015

Water Safety Management

When it comes to the creation and care of water birth facilities nothing is more important.

Micro-organisms breed freely in warm moist environments and must be prevented from propagating.

Below a list of guidelines to help you create a safe water birth facility.

Related information:

 

 

How to restore your old birth pool to pristine condition

We’ve been supplying water birth pools to hospitals since 1989.

Many of the pools we supplied in the 90’s are still in active service!

We occasionally receive reports that the pools are not looking as clean and bright as they originally were.

Not to worry.

There is a product called tide mark cleaner that was developed for spas and swimming pools.

You can either use it to remove stains or brighten up the appearance of the pool when necessary.

It will restore your pool to pristine condition.

Here’s a link:

http://www.amazon.co.uk/Waterline-Cleaning-removes-lines-cleaner/dp/B006DFD7VK

For information about cleaning and disinfection procedures please click here.

 

 

SaveSave

Setting up a water birth facility

Hospitals in the United Kingdom have been evolving clinical guidelines for the use of water for labour and birth for over 3o years.

The protocols for operational policy that they’ve developed are widely regarded as the benchmark standard internationally.

Below a collection of guidelines and publications to help you create a water birth facility.

Clinical Guidelines – Royal Cornwall Hospital

Clinical Guidelines – Royal Worcester Hospital

Guideline for the Management of Women Requesting Immersion in Water  – Norfolk and Norwich University Hospitals

Operational Policy and Clinical Guidelines – Abbey Birth Centre

Birthspace: An evidence-based guide to birth environment design – Queensland Centre for Mothers and Babies

Use of water for labour and birth – Hywel DDA Local health Board

Guidelines for use of pool during labour and delivery – East Cheshire NHS Trust

Guiding principles for midwifery care during normal labour – Barking, Havering and Redbridge NHS Trust

Waterbirth care during labour for low risk women – Sandwell and West Birmingham Hospitals

Waterbirth Guidelines – Midwifery Led Unit, Wirral Hospital

Choosing a Water Birth – East and North Hertfordshire

Birthing pool use of labour and delivery – Wansbeck General Hospital

Water birth and use of water in labour guideline – Buckinghamshire Healthcare

Water for labour and birth guideline – Northern health and Social Care Trust

Immersion in water during labour and birth – NHS Forth Valley

Intrapartum care midwifery led unit – Wirral Women & Children’s Hospital

Guidelines for water birth within the hospital and at home – Dartford & Gravesham NHS

Disinfection and Sterilisation policy (infection control) – Basingstoke and North Hampshire NHS FT

Related information:

Position Statements on Water Birth

United Kingdom Department of Health: Safe water in healthcare premises

Guidance on design, installation, commissioning, testing, monitoring and operation of water supply systems in healthcare premises.

This Health Technical Memorandum (HTM 04-01) has now been revised into 3 parts, A, B and C.

It gives advice and guidance on the legal requirements, design applications, maintenance and operation of hot and cold water supply, storage and distribution systems in all types of healthcare premises to:

  • healthcare management
  • Water Safety Groups
  • design engineers
  • estate managers
  • operations managers
  • contractors
  • the supply chain

It also provides advice and guidance on the control and management of the risk posed by Legionella, Pseudomonas aeruginosa and other water borne pathogens within a healthcare setting.

Part A: covers the design, installation and commissioning

Part B:  covers operational management

Part C:  focuses on specific additional measures that should be taken to control and minimise the risk of Pseudomonas aeruginosa in augmented care units

It should be read in conjunction with the HSE’s Approved Code of Practice (L8) and HSG274 Part 2.

It is equally applicable to both new and existing sites.

Part A: design, installation and commissioning

Part B: operational management

Part C: Pseudomonas aeruginosa – advice for augmented care units

Supplement: performance specification D 08 – thermostatic mixing valves

 

Labour and birth guidelines – West Middlesex University Hospital

February 2015:

By Chantelle Winstanley (Consultant Midwife)

Submitted by Alyson Brown
Natural Birth Centre Lead Midwife
Queen Mary Maternity Unit
West Middlesex University Hospital

Contents

Benefits and rationale for use
Criteria for use
Special circumstances
Care during first stage of labour
Care during second stage
Care during third stage
Emergency procedures in the pool
Cleaning the pool

Related Guidelines

Midwifery-led care
Labour
Prelabour SROM
Group B streptococcus
Fetal monitoring in labour

Ratified by Maternity Services Forum – November 2013

Changes since last update – Infectious Diseases p4

Review Date – November 2016

Labour and Birth in Water

When utilising this guideline to support women who may wish to use water for labour and / or birth, a full discussion must take place between the women and her caregiver to ensure the benefits and potential challenges concerning the use of water have been highlighted.

Where possible, informed decision making should allow for a distinction to be made between ‘Hydrotherapy,’ that is, the use of immersion in the water to ease the discomfort of labour and ‘Waterbirth;’ the term used to indicate that the baby has been born directly into warm water.

Following discussion during the antenatal period or upon admission in labour, it is good clinical practice to document a woman’s preferred option in relation to hydrotherapy for labour and waterbirth. Midwives can refer to pages 14-16 of ‘Birth and Beyond’ leaflet (2012)’ to aid a discussion.

BENEFITS AND RATIONALE FOR USE

Evidence which supports a positive experience for women who choose to labour and / or birth in the water is well documented.

Maternal satisfaction is increased by feeling more relaxed in the water, feeling more in control and more involved in decision-making (Richmond 2003; Hall and Holloway, 1998.)

Hydrotherapy may offer benefits to women owing to feelings of weightlessness, ease of mobility due to water buoyancy, warmth, deep relaxation and the principle of facilitating and accentuating normal childbirth (Odent, 1998; Garland, 2011.) Odent (1998) suggests that the deep relaxation obtained from warm water promotes rapid cervical dilation.

In addition, there is robust evidence to prove that water is a useful analgesic in labour, resulting in less use of epidural and spinal anaesthesia following immersion in the water (Cluett and Burns, 2009.)

There is some evidence to suggest that women who choose a waterbirth sustain reduced perineal trauma, owing to the counter-pressure of the water encouraging steady maternal pushing and a slow delivery of the baby’s head (Garland, 2011.)

A joint statement by the RCOG / RCM, published in 2006, supports the principle of hydrotherapy for healthy women with uncomplicated pregnancies (RCOG / RCM, 2006.) Whilst they state that the evidence for birthing in water is less clear, Cluett and Burns (2009) found that, in comparison to land births, there was no significant difference in the type of birth, Apgar scores (at 5 minutes), admission to NNU and neonatal infection.

Likewise, there is no evidence to support the notion that the use of water in labour and birth increases perinatal morbidity and mortality (Alderice et al 1995; Gilbert and Tookey, 1999.)

CRITERIA FOR THE USE OF WATER IN LABOUR AND BIRTH: HOSPITAL AND HOME SETTING

  • Uncomplicated singleton pregnancy; long lie and cephalic presentation
  • 37 – 42 weeks gestation
  • Spontaneous onset of labour; regular, painful contractions
  • Normal fetal heart rate
  • Maternal observations remain within normal limits
  • Absence of bleeding greater than a blood-stained show
  • Absence of meconium
  • Ruptured membranes for <48 hours* (see Prelabour spontaneous rupture of membranes and Group B streptococcus).*Women with ruptured membranes >24 hours, in an otherwise uncomplicated pregnancy at 37-42 weeks, who make an informed decision for expectant management of labour should not be excluded from hydrotherapy / waterbirth providing that SROM is within 48 hours of the onset of established labour.The liquor should be clear, with no signs of infection or odour with an absence of meconium, known GBS or maternal pyrexia. Vigilant maternal and fetal observation is paramount in these circumstances. Should any concerns arise, the midwife should encourage the woman to leave the water immediately. Following birth, the newborn should be closely observed for a minimum of 12 hours in cases of ruptured membranes >24 hours.
  • Absence of narcotic analgesia: It is not advisable for women who have received opiate analgesics to enter the pool. Women should be clear of sedation symptoms before using water in labour– a recommended time frame is 2-4 hours following the administration of either pethidine or Meptid; midwives should make an assessment of sedation levels before the woman enters the pool.
  • Women with known GBS in current pregnancy: Women with known GBS are not excluded from the use of water, providing intrapartum antibiotics have been offered in established labour. Care should be taken to ensure that infection control principles are adhered to i.e waterproof dressing is applied to the cannula.Women with known GBS and pre-labour ruptured of the membranes (PROM) will be offered immediate IOL (therefore excluded from the use of water.) If women decline IOL and choose expectant management <24 hours there is no current evidence available to suggest that water in labour increase the risk of neonatal / maternal infection in these cases. A full discussion should take place with the woman regarding the risks of GBS / PROM, including liaison with the Obstetric and Paediatric teams.

Special Circumstances: women who fall outside of the criteria for the use of water in labour and birth:

  • A woman should be given the opportunity to discuss her requests with the Consultant Midwife and/or Consultant Obstetrician in the antenatal period. SoMs are also available to support discussions on maternal choice.
  • Women who request a waterbirth but fall outside of the criteria should have a clear plan made and documented based on informed choice, preferably before labour commences. If the plan changes during labour, and midwives are uncertain if the use of water is an appropriate option, they should contact the Supervisor of Midwives (SoM) on call or discuss with the labour ward co-ordinator on duty.
  • All discussions should be thoroughly documented concerning the benefits and risks of using the pool where risk factors are present.
  • Clinical staff should respect that women have a right and choice to opt for a water birth when high risk factors are present.
  • For higher-risk cases where continuous electronic fetal monitoring (cEFM) is recommended, the use of telemetry should be encouraged and Room 6 on labour ward should be prioritised (where possible) to reflect a woman’s request.

Infectious Diseases and Waterbirth

There is no evidence on the safety of water for women with known viral infections. Trust infectious diseases consultants have advised that any woman with HIV and a plan for a vaginal birth will have an undetectable viral load and therefore may use the pool.

Women who are chronic carriers of hepatitis B i.e. ‘e’ antigen negative may also use the pool but those with hepatitis C who are PCR positive i.e. detectable viraemia should not. There will be evidence of discussion and a plan in the notes of women with viral infections.

PREPARING FOR A WATERBIRTH AT HOME

  • Prepare a resuscitation area for the baby – ensure a flat surface; check equipment and have x2 cord clamps prepared in the rare event of cord snapping
  • Prepare an area for the mother to get out of the pool safely in the event of an emergency
  • Ensure that the partner understands they are responsible for filling / empting the pool. Record the temperature as in a hospital pool birth
  • Ensure that there is sufficient mobile phone signal to call 999 in the event of an emergency

MIDWIFERY CONSIDERATIONS

  • Midwives are responsible for their own professional development; only midwives competent in the principles of waterbirth are to care for women requesting hydrotherapy in labour. Support and training is available in the use of water for labour and birth (RCOG / RCM 2006); midwives should speak to the Consultant Midwife or Practice Development team should they require training in this area.
  • When caring for a woman using a birthing pool, back care is important. Minimise bending where appropriate.
  • If possible, encourage the woman to lift her abdomen out of the water to enable fetal heart auscultation.
  • Use gauntlet gloves in the second stage; avoid becoming excessively wet

CARE DURING FIRST STAGE OF LABOUR

  • There is little evidence available for the use of arbitrary points during labour to dictate when pools should or should not be used (RCM, 2012.) Women are recommended to enter the pool when contractions are strong, regular and painful.
  • Prepare a safe place to exit the pool, if required, in the event of an emergency.
  • Check neonatal resuscitation equipment.
  • Comfortable room temperature (21-28o C)
  • Record the water temperature and maternal temperature hourly. RCOG/RCM (2006) suggests that it may be of more benefit to allow women to regulate the pool temperature to their own comfort in the first stage of labour. As a guide, the water temperature can be maintained below <37.5 o C (Gordon, 1996; Garland; 2011)
  • Maternal observations (temp / pulse) and progress should be recorded hourly (with the exception of maternal BP)
  • The fetal heart should be auscultated with an underwater sonicaid and recorded as for intermittent auscultation on land (see Fetal monitoring in labour)
    • Water should be deep enough to facilitate movement and comfort, but not so deep that there is a risk of the cord snapping when the baby is brought to the surface. Therefore water should be at the level of the woman’s nipples.
    • Aromatherapy oils should not be used in the water.
    • Whilst in the pool, the woman may use Entonox for pain relief.
    • Exiting and re-entering the pool should be determined by the woman as she wishes (RCOG/RCM, 2006.) As a guide, encourage the woman to exit the pool every 2 hours to empty her bladder.
    • One midwife, trained and competent in water births, to remain with the woman throughout labour.
    • Allow the woman to adopt any position she finds comfortable.
    • Encourage adequate hydration throughout
    • If delivery is not imminent within 4 hours of entering the pool, the woman should leave the pool for a period of time. She may then re-enter the pool providing her contractions regain regularity and fetal heart patterns are normal.

CARE DURING SECOND STAGE

  • Regulation of water temperature is important in the second stage of labour – maintain water temperature at around 37.0 o C to prevent fetal initiation of respiration under water (Johnson, 1996)
  • It is a recommendation that 2 midwives be present when birth appears imminent
  • Prepare birth equipment. X2 cord clamps are recommended.
  • Careful intermittent auscultation of the fetal heart every 5 minutes for 60 seconds following a contraction.
  • The instinctive, expulsive contractions observed in the second stage may be quite different from that which midwives observe on a bed-based or land birth. Directed pushing is not normally required when a woman is submerged in the water; she will often make instinctive responses to the descending fetal head and control the speed with short pushes.
  • It is important the baby is born totally immersed in the water at the point of birth. During crowning, some women have an uncontrollable urge to lift their bottom up out of the water; this presents a risk to the infant. In this circumstance, the midwife should gently encourage the woman to re-immerse in the water by placing her hand on the woman’s lower back or thigh to guide her.
  • Birth in water is often gentle and relaxed. The infant may take up to a minute to respond. If no sign of breathing is apparent after one minute, clamp and cut the cord, call for emergency assistance, wrap the infant in a clean, dry towel and place on a flat surface and initiate neonatal resuscitation if required.A “hands off” approach is strictly necessary to avoid stimulating the baby and causing initiation of respiration under water. Feeling for the nuchal cord or exerting manual counter pressure on the emerging head is against recommendation and is potentially harmful. DO NOT attempt to clamp and cut a tight cord under water.
  • A mirror may be used to aid visualisation and assess progress of the second stage.
  • As far as possible, faecal contamination in the pool should be removed using a sieve. In the event the pool becomes heavily contaminated, it may be necessary to ask the woman to temporarily leave the pool whilst it is emptied, cleaned and re-filled.
  • Following delivery of head and shoulders, the midwife and / or woman should gently bring the baby head first to the surface. The air will stimulate respiration (Gordon, 1996; Johnson, 1996).
  • The baby’s body should be kept under water to prevent hypothermia.
  • Birth in water is often gentle and relaxed. The infant may take up to a minute to respond. If no sign of breathing is apparent after one minute, clamp and cut the cord, call for emergency assistance, wrap the infant in a clean, dry towel and place on a flat surface and initiate neonatal resuscitation if required.

Slow Progress in the second stage

If progress is slow or not apparent, consider:

  • Maternal and fetal condition and maternal behaviour – all observations within normal limits?
  • Changing maternal position for pushing, possibly leaving the pool
  • Encouragement – use of a mirror to view progress?
  • Emptying the bladder
  • Is the woman adequately hydrated?

Birth would be expected to take place within 3 hours following full dilatation for nullips and 2 hours for multips as for a dry birth.

The woman must leave the pool if there is a deviation from normal.

CARE DURING THIRD STAGE

Physiological third stage

Women who have experienced an uncomplicated first and second stage of labour should be able to choose a physiological third stage following full discussion.

It should be left to maternal choice whether the woman exits the pool for delivery of the placenta (physiological third stage only); the risk of water embolism is entirely theoretical and there are no known cases (Wickham, 2005.)

Midwives should be aware that it is difficult to identify if a woman is having a PPH in the pool.

  • Determine the woman’s choice and ensure all is normal
  • Do not clamp and cut the cord; doing so disturbs normal physiology and may predispose to a retained placenta or PPH.
  • Keep the infant immersed in the warm water at approximately the same level as the uterus to prevent possible excessive transfusion to the baby.
  • Allow the woman to expulse the placenta sitting upright in the water: ensure the water is maintained at 37 o
  • If there is any delay or signs of excessive bleeding, assist the woman to leave the pool immediately. Initiate active management in this case.
  • If the woman wishes to leave the pool for physiological third stage, clamp and cut the cord following cessation of pulsation, pass the baby to a birth partner and assist the woman out of the pool. Keep mother and baby warm with dry towels and encourage skin-to-skin and early suckling. An upright position is recommended. Remove the clamp from the placental end of the cord and allow the blood to drain into a receiver to facilitate separation and expulsion of the placenta.
  • The placenta should be delivered by maternal effort alone.
  • The placenta should deliver spontaneously within an hour following the birth.
  • Blood loss cannot be estimated in the pool. Clots may be collected in a sieve and weighed. The midwife must make a clinical decision about the blood loss – as a general rule, if it is impossible to see the bottom of the pool due to the colour of the water, excessive blood loss may have occurred.

EBL SHOULD BE RECORDED AS MORE OR LESS THAN 500MLS.

  • Placental check as per a land birth

Active management of the third stage

The woman should be asked to leave the pool prior to the administration of an oxytocic drug and delivery of the placenta. DO NOT attempt CCT in the water.

  • Assist the woman to leave the pool
  • 1 ampoule (10 i.u) of Syntocinon to be given IM with consent.
  • Keep mother and baby warm; lie in a suitable, safe place to facilitate delivery of the placenta.
  • Observe signs of placental separation. Apply controlled cord traction whilst guarding the uterus
  • Active management should be complete within 15-30 minutes post birth. Contact a senior doctor if the placenta has not been delivered at this point.
  • Placental check and EBL as per a land birth

Care following the birth

  • Examination of the perineum should take place out of the pool.
  • Excepting cases of profuse bleeding, suturing of perineal tears should be delayed for at least one hour following the birth to allow for water retention of the perineal tissues to dissipate.

EMERGENCIES IN THE WATER

Most emergency situations can be managed with the woman still in the pool.

Very rarely do low-risk women have to be helped from the pool in an emergency.

In all cases of emergencies in the water, prompt recognition of a deviation from the norm is paramount: summon rapid assistance on 2222 or 999 assistance in a home setting.

  1. Shoulder dystocia
  • If the fetal head fails to restitute and the body is not expelled within the next strong contraction with maternal effort, stand the mother up out of the water immediately.
  • Raise one leg up on the step of the pool (or the side of the pool if the woman is able to) If shoulders do not come with the next contraction help her promptly from the bath, lay her on a mat on the floor, summon emergency assistance 2222 immediately and start the emergency drill for shoulder dystocia.
  1. Baby requiring resuscitation
  • Clamp and cut the cord immediately and remove from the water. Call for neonatal assistance on 2222 and commence newborn life support (NLS) drill
  • If in a home setting, summon 999 assistance and utilise NLS equipment.
  1. Post partum haemorrhage (if EBL estimated >500mls)
  • Clamp and cut the cord if the placenta is still in-situ.
  • Give Syntometrine 1 ml and assist the women from the pool immediately.
  • Active management of 3rd stage
  • Summon assistance on 2222; utilise PPH trolley
  • Call 999 if in a home setting
  • Assess for transfer to Labour Ward or theatre for continuing management of postpartum haemorrhage
  • Follow drill for major obstetric haemorrhage
  1. Snapped Cord
  • Very occasionally, it has been noted that the cord may snap as the baby emerges
  • Quickly clamp and cut the cord at both ends to ensure minimal blood loss
  • Observe the infant closely for signs of distress
  • Notify a paediatrician
  • Commence NLS if required
  1. Emergency evacuation of pool in NBC or LW

Equipment required:

SLING NET

Number of handlers required:

MINUMUM 5

  • Lead midwife to call for emergency assistance on 2222 immediately.

CLEANING THE POOL

Stringent infection control principles should be adhered to at all times.

  • Before removing the plug, remove as much debris as possible using the sieve.
  • Open the plug to remove contaminated water.
  • Rinse the pool using the shower attachment.
  • Mix 1 litre of Chlorclean solution using strength of 1 tablet of Chlorclean to 1 litre of water
  • Using a disposable cloth and gloves use the solution to clean the pool, and the surfaces and steps around the pool.
  • Rinse with cold water to remove the Chlorclean solution.
  • Dry the pool.
  • The plug should be closed when the pool is not in use.
  • There should be no moisture at the bottom of the pool when not in use; it must be left dry to prevent bacteria forming.

Cleaning and disinfecting of equipment:

  • Using hot, soapy water, wash the pool thermometer, mirror and any other re-usable equipment that has been used in the pool.
  • Soak the equipment in the pool bucket provided for at least 30 minutes in a solution made of 1 Chlorclean tablets to 1 litres of water.
  • Rinse and dry the equipment.

REFERENCES AND BIBLIOGRAPHY

  • Alderice, F, Renfrew, M and Marchant, S (1995) Labour and birth in water in England and Wales. British Medical Journal. Vol 310; pp837
  • Belbin, A. 1996 Power and choice in birthgiving: a case study British Journal of Midwifery Vol 4 No 5 pp264-267
  • Brown, L. 1998 The tide has turned: an audit of waterbirth. British Journal of Midwifery
  • Charles, C. (1998) Fetal hypothermia risk from warm water immersion. British Journal of Midwifery Vol 6 No3 pp 152-156
  • Cluett, ER and Burns, E (2009) Immersion in water in labour and birth. Cochrane database of systematic reviews. Issue 2. J Wiley and Sons: Chichester.
  • Forde, C et al 1999 Labour and delivery in the birthing pool. British Journal of Midwifery Vol 7 No 3 pp165-171
  • Gilbert, RE and Tookey, PA (1999) Perinatal mortality and morbidity among babies delivered in water; surveillance study and post survey. British Medical Journal. Vol 319 (7208) ; pp 183-187
  • Gordon, Y. 1996 Waterbirth: the safety issues in 1996 Waterbirth unplugged Books for Midwives Press pp135-142
  • Hall, SM and Holloway, IM (1998) Staying in control; women’s experience of labour in water. Midwifery. Vol 14 (1) pp 30-6
  • Johnson, P. 1996 Birth under water: to breathe or not to breathe. British Journal of Obstetrics and Gynaecology
  • McLean, M.T. 2000 Lingering concerns about waterbirth. Midwifery Today Vol 1 N0 54 p 7
  • Mills, M. S. and Stirrat, G. M. 1996 Water immersion and waterbirth. Current Obstetrics and Gynaecology
  • Odent, M. 1998 Use of water during labour: updated recommendations. MIDIRS Vol 8 No 1 pp68-69
  • Richmond, H (2003) Women’s experience of waterbirth. Practising Midwife Vol 6; pp 26-31
  • Royal College of Midwives (2012) Evidence Based Guidelines for Midwifery-led care in labour. RCM: London
  • Royal Collage of Obstetrics and Gynaecology / the Royal College of Midwives (2006) Joint statement no. 1; Immersion in water during labour and birth. RCOG: London
  • Wickham, S (2005) The birth of water embolism. The Practising Midwife. Vol 8(11) pp37

PROCESS FOR MONITORING

Guideline elements to be monitored:

 

  • Documentation of discussion of benefits and possible risks of hydrotherapy / waterbirth with woman either antenatally or on admission in labour
  • Documentated plan for monitoring of fetal / maternal well-being and water temperature throughout labour
  • Documentation and completion of proformas (if applicable) following an obstetric / paediatric emergency in the pool.
Process for monitoring
  •  Retrospective case notes audit
Group responsible for monitoring, review and development of action plan
  • Maternity Improvement Committee
Group responsible for monitoring of action plan and implementation
  • Maternity Services Forum

 

APPENDIX 1

PROCEDURE FOR EMERGENCY POOL EVACUATION IN THE EVENT OF
MATERNAL COLLAPSE

1. Call for emergency help

2. Support the mother’s head above water

3. DO NOT empty the pool – water helps to float the woman out of the pool

4. Locate the sling net from the adjoining sluice room

5. Prepare a bed / trolley at pool height to receive the woman – remove the head of the bed if necessary and switch off electric supply

6. Prepare towels to receive the woman to keep warm and maintain temperature

7. Minimum 5 members of staff required

8. Work as a team. Float the sling under the woman covering the full length of body, arms inside the sling

10. Work as a team.
X1 staff at the woman’s head
X2 staff on either side of the net, feet supported

11. Work as a team.
12. On the count of 3, transfer from pool to bed using the sling net, with full support

13. Start CPR if required

Position statement on the use of water immersion for labour and birth – Australian College of Midwives

Australian College of Midwives – 2013

This position statement should be read in conjunction with the Australian College of Midwives’ (ACM) position statement for midwives caring for women who make choices outside professional advice.

The ACM supports the choice of women to have the opportunity to access water immersion for labour and/or birth. The ACM identifies six key principles for the safe use of water immersion for labour and birth.

Key principles

1. Warm water immersion has been used for relieving the intensity of pain associated with labour. Warm water and buoyancy elevates the release of endorphins and facilitates relaxation.

2. There are many benefits of using immersion in water during labour, including increasing women’s feelings of control and satisfaction, less painful contractions and less need for pharmacological analgesia, shorter labour, less need for augmentation, with no known adverse effects for the woman herself.

3. Women should be provided with unbiased evidence-based information during pregnancy about their options for labour and birth, including water immersion in labour and/or birth, in order to make informed choices.

4. Informed decision-making, informed consent, and right of refusal are accepted principles in Australia. Each and every woman has the right to make informed decisions, including consent or refusal of any aspect of her care. Women must be respected in the choices that they make.

5. Midwives have a primary responsibility to ensure that their decisions, recommendations and practices are focused on the needs and safety of the woman and her baby/babies.

6. There is no evidence of significant increases in perinatal mortality or morbidity although there are some reports of rare complications. There is limited research on the safety of birth in water and most of the evidence that does exist, is restricted to healthy women with uncomplicated pregnancies.

Achieving best practice

To achieve best practice in the use of water immersion for labour and birth, it is necessary for consumers, professional colleges, education providers, health systems, Australian and State and Territory governments and policy makers to work together to:

  • foster a culture of valuing physical, emotional, social, cultural and spiritual safety in all birth environments;
  • provide women with access to water immersion in labour and/or birth;
  • provide the preparation and education required to ensure that midwives are
    competent and confident to care for women who choose water immersion in
    labour and/or birth;
  • ensure that midwives to work to their full scope of practice;
  • develop evidence-based policies that reflect best practice;
  • undertake more research on immersion in water during labour and birth. In
    particular, no trials have been identified that assess the effect of immersion in water during the third stage of labour.

Resources to guide practice

The ACM recommends the use of the following resources to guide midwives in their practice:

  • Australian College of Midwives, National Midwifery Guidelines for Consultation and Referral, 2013. Australian College of Midwives, Canberra.
  • Cluett, E.R., et al., Randomised controlled trial of labouring in water compared with standard of augmentation for management of dystocia in first stage of labour. BMJ, 2004. 328(7435): p. 314.
  • Cluett ER, B.E., Immersion in water in labour and birth. Cochrane Database of Systematic Reviews 2009, Issue 2. Art. No.: CD000111. DOI: 10.1002/14651858.CD000111. pub3. , 2009.
  • Hall, S.M., & Holloway, I. M. , Staying in control: Women’s experiences of labour in water. . Midwifery, 1998. 14: p. 30-36.
  • Miller, Y., Thompson, R., Porter, J., Prosser, S., & Fletcher, R. , Findings from the Having a Baby in Queensland Pilot Survey 2009. 2010. Queensland Centre for Mothers & Babies, The University of Queensland.
  • RCOG/Royal College of Midwives. Immersion in Water During Labour and Birth (Joint Statement No. 1), 2006. Available from: http://www.rcog.org.uk/womens- health/clinical-guidance/immersion-water-during-labour-and-birth
  • Richmond, H., Women’s experience of waterbirth. The Practising Midwife, 2003. 6(3): p. 26-31.
  • Zanetti-Daellenbach, R.A., et al., Maternal and neonatal infections and obstetrical outcome in water birth. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2007. 134(1): p. 37-43.

Date of Issue; 30th May 2013
Date of Review; 29th May 2016

New Zealand College of Midwives – Use of water for labour & birth

The New Zealand College of Midwives (Inc) supports immersion of women in warm water during labour as a method of pain management.

There is no evidence that remaining in water for the birth of the baby leads to adverse outcomes for the mother or baby where the labour has been within normal parameters.
Definition:Water birth means where a baby is born fully submerged into water.Rationale:

  • Evidence supports immersion in warm water as an effective form of pain relief that reduces the use of narcotics.
  • There is no evidence to suggest that immersion in water during labour or birth in water leads to any detrimental effects for either the mother or her baby.
  • Evidence that immersion in water during labour reduces the length of active labour is inconclusive.
  • Evidence that birth in water reduces perineal trauma or blood loss is inconclusive.

Guidelines:

Midwives offering water immersion for labour and for birth are responsible for ensuring the information given to women is accurate and up to date. The following guidelines are recommended:

  • There are no adverse factors noted in foetal or maternal wellbeing during labour.
  • Baseline assessments of both maternal and baby wellbeing should be done prior to entering the bath/pool and assessments continued throughout the time in water as for any normal labour.
  • Vaginal examinations can be performed with the woman in water.
  • Pethidine should not be given to women labouring in water.
  • The water temperature should be kept as cool as the woman finds comfortable during the first stage of labour (around 35oC) and increased to no more than 37oC for the baby’s birth.
  • If maternal temperature rises more than 1oC above the baseline temperature then the water should be cooled or the woman encouraged to leave the bath/pool. Women need to be aware of this in advance.
  • Water temperature should be recorded as the woman enters the bath/pool and regularly during the time she remains in the pool.
  • Careful documentation should be kept of maternal and water temperatures, FHR and the approximate surface area of the woman’s body submerged.
  • The cord should not be clamped and cut until after the birth of the baby’s body.
  • The baby should be brought to the surface immediately, with the head facing down to assist the drainage of water from the baby’s mouth and nose.
  • The baby’s body can remain in the water to maintain warmth, unless the baby’s condition dictates otherwise. (Note: babies born in water may take slightly longer to establish respirations than those born into air. Maintain close observation of colour, heart rate and respirations.)
  • Third stage should be managed physiologically as for any other low risk birth. If oxytocin is required or third stage is prolonged the woman is assisted to leave the bath/pool.
  • Midwives must ensure that baths and pipes are thoroughly cleaned after use.

References:

Title: Labour and delivery in the birthing pool
Author: Forde, C, Creighton, S, Batty, A, Howden, J, Summers-Ma, S, and Ridgeway, G

Title: Warm tub bathing during labour: maternal and neonatal effects
Authors: Ohlsson, G, Buchave, P, Leandersson, U, Nordstrom, L, Rydhstrom, H, and Sjolin, I
Source: Acta Obstetricia et Gynecologica Scandinavica, Vol 80, pp 311 – 314, 2001

Title: Immersion in water in the first stage of labour: a randomised controlled trial Authors: Eckert, K, Turnbull, D, and MacLennan, A
Source: Birth, Volume 28, No 2, pp 84–93, June 2001

Title: Immersion in water during first stage of labour
Author: Homer, C
Source: Letter to the editor, Birth, Vol. 29, No 1, March, 2002

Title: Waterbirths: a comparative study. A prospective study on more than 2000 waterbirths
Authors: Geissbuhler, V and Eberhard, J
Source: Foetal Diagnosis Therapy, Vol. 15, pp. 291 – 300, 2000

Title: Immersion in water in pregnancy, labour and birth
Author: Nikodem, VC
Source: Cochrane Database Systematic Review, 2000

Title: Perinatal mortality and morbidity among babies delivered in water: surveillance study and postal survey
Authors: Gilbert, R and Tookey, P
Source: British Medical Journal, 319 (7208), pp. 483 – 487, 1999

Title: Birth under water – to breathe or not to breath
Author: Johnson, P
Source: British Journal of Obstetrics and Gynaecology, 103, 202-208, 1996

Title: Labour and birth in water: temperature of pool is important
Authors: Deans, AC and Steer, PJ
Source: British Medical Journal. 311:390-391, 1995

Title: Waterbirth – An attitude to care
Author: Garland, D
Source: Books for Midwives, 1995. Chesire

Title: Foetal hypothermia risk from warm water immersion
Author: Charles, C
Source: British Journal of Midwifery

MANA and CfM Issue Joint Position Statement on Water Birth

18 February 2016: Midwives Alliance

The MANA and CfM Joint Position Statement on Water Immersion During Labor and Birth is a position paper written for a broad audience including midwives and other birthcare professionals, consumers, doulas, childbirth educators, and policy makers.

It is co-authored by the Midwives Alliance of North America and Citizens for Midwifery.

A year of collaborative work has produced a great educational tool that gives concise access to the research and the wisdom of experience that documents the safety, benefits and recommendations for success.

With over 80 citations, including the new study “Maternal & Newborn Outcomes Following Immersion During Waterbirth” by Bovbjerg, Cheyney and Everson, which utilized data from the MANA Statistics project, and research by waterbirth activist Barbara Harper, the position paper is a reference guide to the evidence for the safety of water immersion during labor and birth.

How does the new study using data from the MANA Statistics project help us better understand waterbirth?

The research of Bovbjerg, Cheyney and Everson helps to dispel some of the more publicized concerns about the safety of waterbirth to the baby, including drowning, cord avulsion and respiratory distress.

No deaths in over 6500 water births were attributable to being born under water. There was also no additional risk of maternal infection or hemorrhage.

The MANA Stats study showed that 35% of over 18,000 home and birth center births occurred in water, demonstrating that the midwives contributing to MANA Stats have considerable experience attending and monitoring births in water.

The experience level of the practitioner may be an important factor in the safety of waterbirth.

6,521 waterbirths, including 13 sets of twins, 29 breeches and 327 VBACs, were compared with 10,252 mothers who did not choose waterbirth, making this the largest comparative study on waterbirth to-date.

Additionally, this is the first large waterbirth study of a US population, with its unique healthcare system and demographics.

While the ACOG/AAP Committee Opinion of April, 2014, not recommending water immersion for birth, acknowledged the limitations of the available research on waterbirth, this large US study fills that gap and gives us the best evidence to-date on the safety of birthing in water.

“Maternal & Newborn Outcomes Following Immersion During Waterbirth” by Bovbjerg et al, was published Jan. 20, 2016 in the Journal of Midwifery & Women’s Health.

JMWH has generously agreed to make this research article open access, so midwives, birth workers, and consumers can read it without needing to buy a subscription to the Journal.

What else can we learn from the MANA/CfM Joint Position Statement?

Evidence and experience show us that mothers choose waterbirth for several reasons.

They report feeling more relaxed, in control, able to move more freely, and, notably, relief from pain.

Especially considering the risks of pharmacologic pain management such as epidural and spinal anesthesia, water immersion during labor and birth may be safer for mother and baby.

“In addition, because water immersion facilitates normal physiologic birth it may also be associated with other beneficial health outcomes for mother and baby, including decreased need for intervention during labor and reduced incidence of surgical/instrumental delivery.”

As in all healthcare and birthcare decisions informed consent/refusal and shared decision making with your care provider is key to determining what is best for each family.

The Joint Position Statement can help in these ways:

  • describes the benefits of water immersion for mother and baby,
  • suggests how these benefits may improve outcomes for families of color,
  • addresses consumer choice and shared decision making,
  • considers client values and individual needs and,
  • lists factors that promote safety and success.

The practical and professional pearls of wisdom make the Factors that Promote Safety and Success section an invaluable tool when considering and planning a waterbirth and we are pleased to be able to share them with you.

The conclusion:

Many families consider water immersion during labor and birth a valuable option.

Current research and experience show waterbirth to be safe for mothers and babies and may provide benefits to both.

“MANA and CfM support the use of water immersion during labor and birth, and believe it should be made available to birthing families across all settings.

MANA and CfM encourage all care providers to become educated about the safe use of water immersion during labor and birth, and to engage in a shared decision making process when discussing the option of water immersion with their clients.” (quote from the statement)

The authors of the joint position statement are:

Jill Breen, CPM, CLC; Justine Clegg, CPM, LM, MS; Nasima Pfaffl, MA, President CfM; Amy Smith, CPM

Thanks also to the consultants on the statement:

Barbara Harper, RN, CD, CCE; Holly Horan, MA; Jennie Joseph, LM, CPM, CEO of Commonsense Childbirth, Inc.; Indra Lusero, JD, MA; Jeanette McCulloch, IBCLC; Shafia M. Monroe, MPH, DEM, CDT, President and CEO of the International Center for Traditional Childbearing (ICTC).

Evidence Based Guidelines for Midwifery Led Care in Labour: Birth Environment

Practice Points

Ensure that pregnant women receive high quality care throughout their pregnancy, have a normal childbirth wherever possible, are involved in decisions about what is best for them and their babies, and have choices about how and where they give birth (DH 2004).

Respect for a woman’s wishes and her involvement in decision making is essential to her care in pregnancy and labour (NICE 2007; DH 2004). The birth plan should be discussed in full with the midwife looking after the woman in labour.

Hospital is an alienating environment for most women, in which institutionalised routines and lack of privacy can contribute to feelings of loss of control and disempowerment (Lock and Gibb 2003; Steele 1995).

The studies by Green et al. (1990) and Simkin (1992) found that control, or lack of it, was important to the women’s experience of labour and their subsequent emotional well-being.

Trials have demonstrated the benefits to women of having a low-risk, midwife-led area as an alternative to the conventional labour ward (Birthplace in England Collaborative Group 2011; Hodnett et al. 2010; Hatem et al. 2008; Byrne et al. 2000; Hodnett 2000; Waldenstrom 1997; Hundley et al. 1994; McVicar et al. 1993).

The non-labour ward or radically modified environment is associated with lower rates of analgesia, augmentation and operative delivery, as well as greater satisfaction with care and positive effect on care givers (Birthplace in England Collaborative Group 2011; Hodnett et al. 2010; Hodnett et al. 2009).

Midwives should be aware of the influence the physical environment has on their practice (Hodnett et al. 2010).

2 Evidence Based Guidelines for Midwifery-Led Care in Labour ©The Royal College of Midwives 2012

Birth Environment

The environment in which a woman labours can have a great effect on the amount of fear and anxiety she experiences.

Hospital is an alienating environment for most women, in which institutionalised routines and lack of privacy can contribute to feelings of loss
of control (Lock and Gibb 2003; Steele 1995).

Brown and Lumley (1994) found that the technology and intervention that has now become commonplace on many labour wards was implicated in women’s dissatisfaction with labour. Increased anxiety brought on through loss of control can interfere with the normal effective physiology of labour (Steele 1995).

The studies by Green et al. (1990) and Simkin (1992) found that control,
or lack of it, was important to the women’s experience of labour and their subsequent emotional wellbeing.

It is not easy to separate the influence of the model of care
from the physical environment on the outcomes.

Hodnett et al. (2010) discuss the effect that the physical environment can have on practice, within the supportive social model of care.

In 2009, Hodnett et al. undertook a pilot study aimed to investigate the impact of the physical environment on women and practitioners by making simple but radical modifications to a hospital labour room, which included the removal of the standard hospital bed and the addition of equipment to promote relaxation, mobility,
and calm.

The women were then randomly allocated either the modified or typical
labour room.

Though the pilot was small in numbers, the outcomes indicated that the physical environment modification had a positive effect on women and care providers.

The philosophy of mobilisation in active labour was increasingly supported in the modified environment (Hodnett et al. 2009).

RCM (2008) Birth Centre Standards for England Standard 7.6 sets criteria of
‘An environment that protects and promotes women’s privacy and dignity, respecting

their human rights and provides facilities to maintain adequate nutrition and hydration in labour.’

Respect for a woman’s wishes, and her involvement in decision-making is essential to her care in pregnancy and labour (DH 2007, DH 2004).

National Service framework maternity policy (DH 2004) pledged that service should “ensure that pregnant women receive high quality care throughout their pregnancy, have a normal childbirth wherever possible, are involved in decisions about what is best for them and their babies, and have choices about how and where they give birth” and the choice aspect remains within NHS future plans (DH 2010).

It would appear that women have better physical and emotional labour outcomes when they are involved in the decision making (Hodnett et al. 2010).

Green et al.’s study (1990) found that good information was important to a woman’s birth experience and also to her subsequent emotional well-being.

The decision-making must extend to the woman’s choice of companion(s), who should be made to feel welcome in the labour ward.
3
Evidence Based Guidelines for Midwifery-Led Care in Labour ©The Royal College of Midwives 2012

Birth Environment

Birth planning is a continuous part of antenatal care.

This requires a focussed discussion about place of birth, at which ‘women should receive clear, unbiased advice and be able to choose where they would like their baby to be born’ (DH 2007; DH 2004).

The recent Birthplace in England study (Birthplace in England Collaborative Group 2011) looked at safety of births planned in 4 different settings: home, freestanding midwifery units, alongside midwifery units and obstetric units for women with straightforward pregnancies.

It found that birth is safe wherever it takes place but there is a small but increased risk of adverse outcome for the neonate for nulliparous women associated with planned home birth.

The outcomes for multiparous or in other midwife led birth environments were the same. The study did not look into reasons for this and further exploration into the variation is required.

However, this information needs to be included in the discussions with women antenatally. The ‘birth talk’ and associated birth plan are essential opportunities for women and midwives to share information (NICE 2007).

The birth plan should be discussed in full with the midwife looking after the woman
in labour.

Women often find it difficult to ask questions, so midwives need to encourage them to do so, and to act as advocate for the wishes expressed (Kirkham 1986).

Trials have demonstrated the benefits to women of less intervention and more mobility, in having a low-risk, midwife-led area as an alternative to the conventional labour ward (Birthplace in England Collaborative Group 2011; Hodnett et al. 2010; Hatem et al. 2008; Byrne 2000; Hodnett 2000; Waldenstrom 1997; Hundley et al. 1994; McVicar et al.

1993). The philosophy behind the provision of such units is to provide a ‘homely’ environment, where women can take more control and labour is managed with minimal intervention (Hodnett et al. 2010; Hundley et al. 1994).

It has also been found that women who give birth in low-tech, midwife-led facilities, e.g. home or birth centres, require less pharmacological analgesia (Hodnett et al. 2010; Chamberlain et al. 1997; Skibsted and Lange 1992).

Hodnett et al.’s (2010) review found that the alternative birth setting environment is associated with lower rates of analgesia, augmentation and operative delivery, as well as greater satisfaction with care.

There was a non-statistically- significant trend towards higher perinatal mortality in the home-like setting, and the reviewers conclude that ‘an over-emphasis on normality’ may lead to delayed recognition of or action regarding complications.

Walsh (2004) has challenged this conclusion from his own experience and suggests that midwives who work in this environment are ‘astute assessors of normal birth’ and highly skilled practitioners, who are active in performing repeated emergency drills.

Hodnett et al. (2010) found, in their comparison of alternative and conventional labour and birth environments, that staff working in the ‘alternative’ settings all shared philosophies and guidelines that valued midwifery-led care.

The study was not able to explore the separate influences of the physical environment and models of care such as, for example, continuity of caregiver, but concluded that the impacts of midwifery-led care and the nature of the birth setting are fundamentally interdependent in the chain of cause and effect leading to more positive outcomes.
4

Evidence Based Guidelines for Midwifery-Led Care in Labour ©The Royal College of Midwives 2012

Birth Environment

References
Brown S, Lumley J (1994) Satisfaction with care in labour and birth: a survey of 790 Australian women. Birth 21(1): 4-13

Birthplace in England Collaborative Group (2011) Perinatal and maternal outcomes by planned place of birth for healthy women with low risk pregnancies: The Birthplace in England national prospective cohort study. British Medical Journal 343: d7400

Byrne J, Crowther C, Moss J (2000) A randomised controlled trial comparing birthing centre care with delivery suite care in Adelaide. Australia Australian and New Zealand Journal of Obstetrics and Gynaecology 40(3): 268-74

Chamberlain G, Wraight A, Crowley P (1997) Homebirths: The Report of the 1994 Confidential Enquiry by the National Birthday Trust Fund. Carnforth, Lancashire: The Parthenon Publishing Group

Department of Health (DH) (2010) Equity and Excellence: Liberating the NHS. London: HMS

Department of Health (2004) National Service Framework for Children, Young People and Maternity Services. London:DH

Green JM, Coupland VA, Kitzinger S (1990) Expectations, experiences and psychological outcomes of childbirth: a prospective study of 825 women. Birth 17(1): 15-24

Hatem M, Sandall J, Devane D et al. (2008) Midwife-led versus other models of care for childbearing women. Cochrane Database of Systematic Reviews, Issue 4. Chichester: John Wiley & Sons

Hodnett E, Downe S, Edwards N, et al. (2010) Alternative versus conventional institutional settings for birth. Cochrane Database of Systematic Reviews, Issue 9. Chichester: John Wiley & Sons

Hodnett ED, Stremler R, Weston JA, et al. (2009) Re-conceptualizing the hospital labor room: the Place (Pregnant and Laboring in an Ambient Clinical Environment) pilot trial. Birth 36(2):159-66

Hodnett ED, Hatem M, Sandall J, et al. (2008) Continuity of caregivers for care during pregnancy and childbirth. Cochrane Database of Systematic Reviews, Issue 4. Chichester: John Wiley & Sons

Hodnett ED (2000) Continuity of caregivers for care during pregnancy and childbirth. Cochrane Database of Systematic Reviews 2000, Issue 1. Chichester: John Wiley & Sons

Hundley V, Cruikshank F, Lang G, et al. (1994) Midwife managed delivery unit: a randomised controlled comparison with consultant led care. British Medical Journal 309(6966): 1400-1404

Kirkham MJ (1986) A feminist perspective in midwifery. In Webb C (ed.) Feminist practice in women’s health care. Chichester: John Wiley

Lock L, Gibb H. (2003) The Power of Place. Midwifery 19(2): 132-139
McVicar J, Dobbie G, Owen-Johnston L, Jagger C, et al. (1993) Simulated home delivery:

a randomised control trial. British Journal of Obstetrics and Gynaecology 100(4): 316-33
National Institute of Clinical Excellence (NICE) (2007) Intrapartum care: management and delivery of care to women in labour. London: NICE

The Royal College of Midwives (RCM) (2008) Standards for birth centres in England: a standards document. London: RCM

Simkin P (1992) Just another day in a woman’s life? Part 2 Nature and consistency of women’s long-term memories of their first birth experiences. Birth 19(2): 64-81

Some water borne bacteria are tough

Originally published by  Matthew R. Freije in 2013

Water is more prone to bacteria growth after it leaves the public water distribution system and enters a building’s plumbing. There it finds warmer temperatures, stagnation, and smaller pipes, valves and fittings.

Biofilm that forms on valves and fittings and pipe walls not only feeds bacteria but also protects them from the hot water and chlorine that typically would kill free-floating organisms.

Large systems with complex piping networks — like those found in hospitals, hotels and large apartment buildings — are especially prone to bacteria growth, but home plumbing systems are not exempt.

In fact, Legionella bacteria have been found in many home plumbing systems, some of which have been implicated in cases of Legionnaires’ disease.

Closer look at waterborne bacteria

Not all types of bacteria are unhealthy; some actually protect humans from illness. Only the disease-causing (pathogenic) bacteria are a concern, and these include Pseudomonas aeruginosa, Helicobacter pylori, Legionella, E. coli and Mycobacteria avium.

Many pathogens that can be transmitted from water also can be transmitted from food or surfaces or passed from person to person. For Legionella, however, water is nearly always the source.

Transplant patients, smokers, the elderly, persons with underlying disease such as cancer or diabetes, or patients undergoing chemotherapy treatment are many times more likely than a young nonsmoker in generally good health to become infected by waterborne bacteria and to die from that infection.

Modes of transmission

Drinking water is only one of the ways in which harmful bacteria can enter a person’s body.

Some bacteria can be inhaled in small droplets while showering, brushing teeth or washing the face.

Even while washing hands, a person could unknowingly inhale small water droplets that become airborne directly from the faucet or after water splashes against the sink.

Water droplets can enter the lungs and cause infection also by aspiration: contaminated water in the mouth, perhaps while swallowing, gets past the choking reflexes and enters the lungs instead of the esophagus and stomach.

Aspiration is more likely to occur in smokers, because their damaged respiratory tracts fail to keep substances out of the lungs.

Water-related illness associated with skin contact is less common in generally healthy people.

However, Pseudomonas aeruginosa has caused skin rashes in people using swimming pools or whirlpool spas that have not been properly treated to kill bacteria.

All four modes of transmission — ingestion, inhalation, aspiration and skin contact — have one crucial fact in common: The source of the problem is in the water.

If the water is not contaminated, illness will not occur.

Reducing risk

Bear in mind that the following comments pertain only to home plumbing systems. Some methods that are effective in home plumbing systems will not work well in hospitals, hotels or other large buildings.

Chemical disinfection

The disinfectant in a public water supply cannot be relied upon to control pathogens in a home plumbing system.

The free chlorine concentration varies significantly from city to city and even within a given distribution system, depending in part on the distance from the treatment plant to a home.

The water entering some homes may have 1.0 part per million (ppm) free chlorine while others will have 0.2 ppm or less.

Moreover, hot water at faucets and showers is unlikely to have any disinfectant, as chlorine concentrations are likely to dissipate in the water heater.

Although two studies conducted by the Centers for Control of Disease and Prevention (CDC) indicated that city water systems treated with monochloramine are less conducive to Legionella growth than are systems treated with chlorine, more data is needed to draw conclusions, particularly since Legionella have been found in several buildings supplied with monochloramine-treated water.

Point-of-entry (POE) treatment systems are used in some hospitals and hotels to inject chlorine dioxide or copper-silver ions into the plumbing system, or perhaps only into the hot water system.

However, this is not the most desirable or effective option for pathogen control in homes. A single treatment with chlorine or chlorine dioxide may be beneficial for newly constructed systems or systems that have been stagnant for a long period of time.

Following Water Quality Association (WQA) guidelines, the home plumbing system should also be disinfected in conjunction with the installation of a POE filtration system.

Hot water temperatures

The types of bacteria typically found in plumbing systems grow well in warm-water environments but will not multiply above a certain temperature.

For example, in the absence of biofilm, Legionella will not multiply at temperatures above 122 F (50 C) and will die within about 32 minutes at 140 F (60 C). Pseudomonas aeruginosa will not multiply above 108 F (42 C). Mycobacteria will multiply up to about 124 F (51 C).

Keeping water at 140 F (60 C) in large-building plumbing systems will not always control bacteria because of dead areas and other complexities in a large piping network, but studies have shown that high temperatures are effective in controlling Legionella bacteria in single-family residences.

In 95 Chicago-area homes studied by P.M. Arnow’s group*, Legionella were found in water samples collected from plumbing systems at temperatures under 140 F (60 C), but not in a single sample from systems above 140 F (60 C).

Setting the water heater to deliver 140 F (60 C) water to all taps will help to control waterborne pathogens but should not be done if the house is occupied by children or others who may open a hot water faucet unaware of the risk of scalding.

Skin damage will occur in adult males within 15-30 seconds at 130 F (54 C) and within 3-5 seconds at 140 F (60 C). Children and the elderly will scald even more quickly, and they will scald at lower temperatures.

Ultraviolet treatment. Properly sized ultraviolet (UV) disinfection units installed at the point of entry may be effective in controlling bacteria in home plumbing systems.

Whole-building UV has been unsuccessful in solving Legionella problems in large buildings because in those systems a residual disinfectant is required to prevent recontamination from biofilm. However, UV has been effective in controlling Legionella on a single floor of a hospital. Turbid water must be filtered for UV to be effective.

Filters and RO. Typical sediment or carbon filters will not block bacterial pathogens, and dirty ones actually make a good habitat for them. However, hollow-fiber membranes and other devices with a pore size of 0.2 micron or smaller will block bacteria.

At this time, submicron point-of-use (POU) filters are used in some hospitals but not generally in homes. However, several new sub-micron POU and POE filtration products are likely to be introduced, including products for home systems.

Whole-house hollow-fiber membrane systems, already available, provide filtration to 0.02 micron nominal and a flow rate of approximately 11 gallons per minute (gpm). These systems must be backwashed at least once daily.

Reverse osmosis (RO) systems certainly remove bacteria but need to be properly maintained to prevent bacteria growth in tanks and on membranes.

For pathogen control, filters should be evaluated based on: flow rate reduction; independent studies validating their ability to block bacteria; filter life; distance from the point of use (since bacteria could be released from biofilm downstream of the filter); and cost.

Many options are available for pathogen control in home plumbing systems, only a few of which have been discussed in this article.

Remember, it is critical to control waterborne pathogens in homes occupied by the elderly or immuno-compromised.

* “Prevalence and significance of Legionella pneumophila contamination of residential hot-tap water systems,” Journal of Infectious Diseases 152 (1985); 145-151

Matthew R. Freije is president of Solana Beach, CA-based HC Info.

He is a consultant, author and course instructor specializing in waterborne pathogens. Freije earned a B.S. degree in mechanical engineering from Purdue University; a water treatment plant operations specialist certificate from California State University, Sacramento; and is a Certified Water Specialist (WQA). His book Legionellae Control in Health Care Facilities: A Guide for Minimizing Risk has sold in more than 30 countries. Portions of this article were taken from Freije’s new book on home water treatment, due to be released this year.

Legionella – blowing bugs out the water

In recent years, Legionella has made it back into the news, with several reported outbreaks in hospitals across the UK.

As recently as June this year, Brighton and Sussex University Hospitals NHS Foundation Trust was fined £50,000 for failing to control the growth of Legionella in its water systems.

With the spotlight firmly back on the need for bug-free water systems, manufacturers are bringing to market a range of solutions.

Facilities and estates managers should avoid water temperatures and conditions that favour Legionella growth, ensure water cannot stagnate anywhere in the system, remove any redundant pipework that may exist in the network, and stop using any materials that encourage the development of Legionella.

Good offence is the best defence when it comes to water systems.

Options that should be considered include thermal disinfection – maintaining constant high temperatures as well as shock disinfection; chemical disinfection – the presence of an additive like chlorine; good system design to avoid stagnation of water; regular maintenance to remove any sediment from the system; and the use of materials that inhibit the formation of biofilm for the bacteria to feed off.

Guidance on the subject can be found in the latest versions of the Health and Safety Executive’s ACOP L8 and its appended HSG 274 parts 1, 2 and 3, among others.

Legionnaires disease is caused by a bacterium that exists in water and remains inert at temperatures below 25°C.

It proliferates in water circuits at temperatures fluctuating between 25°C and 45°C, meaning hot and cold water systems, air conditioning circuits, and cooling towers are most at risk.

Facilities and estates managers should avoid water temperatures and conditions that favour Legionella growth, ensure water cannot stagnate anywhere in the system, remove any redundant pipework that may exist in the network, and stop using any materials that encourage the development of Legionella.

Active Birth Pools are fabricated in one solid piece of Ficore composite without seams or seals and are impervious to bacteria.

An Active Birth Pool manufactured in Ficore meets or exceeds all relevant regulations and will withstand the rigours of heavy hospital use and disinfection with caustic chemicals.

Ficore is a composite of eight different elements chemically fused during manufacturing and then heat cured at high temperature to create a material that is light in weight but ‘heavy’ in performance.

1. The surface of Ficore is isophthalic neo-pentyl-glycol that is:

a) 50% harder (stronger) than acrylic and fiberglass – materials other birth pools are made from.

b) Able to withstand both continuous heat or hot water of 80 degrees Celsius/176 Fahrenheit, and thermal shock of alternating hot and cold water.

c) Extremely smooth, tactile and warm to the touch.

d) Resistant to most chemicals including acid or alkaline solutions (e.g. lime scale remover) which neither acrylic nor vitreous enamel can withstand.

e) Less slippery than acrylic or fibreglass. Mothers experience better traction and are safeguarded from injury resulting from slipping or falling.

2. Due to Ficore’s high insulation factor Active Birth Pools maintain water temperature 6 x longer than acrylic baths and 12 x longer than vitreous enameled baths.

3. Ficore has an extremely high degree of structural integrity.  It is none flexing, and will not buckle, bow, or change shape under pressure.

4. It will not chip as will vitreous enamel.

5. It is fully repairable.

6. While fibreglass or acrylic birth pools carry only a 1 – 2 year guarantee, we guarantee Active Birth Pools manufactured in Ficore for 20 years.

7.  Ficore is:

  • Approved by Lloyd’s Register of Shipping
  • Approved by Wine Laboratories Limited for long term storage  of high alcohol content wines and spirits
  • Approved by The Water Research Council and the Water Bylaws Advisory Service for the longterm storage of potable water.

Active Birth Pools are not equipped with features such as overflow drains, jets/jacuzzi’s, integral plumbing and heating systems which are in contravention of Health & Safety regulations.

 

The use of water in labour and birth – NZ College of Midwives

The New Zealand College of Midwives (Inc) supports immersion of women in warm water during labour as a method of pain management.

There is no evidence that remaining in water for the birth of the baby leads to adverse outcomes for the mother or baby where the labour has been within normal parameters.

Definition:

Water birth means where a baby is born fully submerged into water.

Rationale:

• Evidence supports immersion in warm water as an effective form of pain relief that reduces the use of narcotics.

• There is no evidence to suggest that immersion in water during labour or birth in water leads to any detrimental effects for either the mother or her baby.

• Evidence that immersion in water during labour reduces the length of active labour is inconclusive.

• Evidence that birth in water reduces perineal trauma or blood loss is inconclusive.

Guidelines:

Midwives offering water immersion for labour and for birth are responsible for ensuring the information given to women is accurate and up to date.

The following guidelines are recommended:

• There are no adverse factors noted in foetal or maternal wellbeing during labour.

• Baseline assessments of both maternal and baby wellbeing should be done prior to entering the bath/pool and assessments continued throughout the time in water as for any normal labour.

• Vaginal examinations can be performed with the woman in water.

• Pethidine should not be given to women labouring in water.

• The water temperature should be kept as cool as the woman finds comfortable during the first stage of labour (around 35oC) and increased to no more than 37oC for the baby’s birth.

• If maternal temperature rises more than 1oC above the baseline temperature then the water should be cooled or the woman encouraged to leave the bath/pool. Women need to be aware of this in advance.

• Water temperature should be recorded as the woman enters the bath/pool and regularly during the time she remains in the pool.

• Careful documentation should be kept of maternal and water temperatures, FHR and the approximate surface area of the woman’s body submerged.

• The cord should not be clamped and cut until after the birth of the baby’s body.

• The baby should be brought to the surface immediately, with the head facing down to assist the drainage of water from the baby’s mouth and nose.

• The baby’s body can remain in the water to maintain warmth, unless the baby’s condition dictates otherwise. (Note: babies born in water may take slightly longer to establish respirations than those born into air. Maintain close observation of colour, heart rate and respirations.)

• Third stage should be managed physiologically as for any other low risk birth. If oxytocin is required or third stage is prolonged the woman is assisted to leave the bath/pool.

• Midwives must ensure that baths and pipes are thoroughly cleaned after use.

References:

Title: Labour and delivery in the birthing pool
Author: Forde, C, Creighton, S, Batty, A, Howden, J, Summers-Ma, S, and Ridgeway, G

Title: Warm tub bathing during labour: maternal and neonatal effects
Authors: Ohlsson, G, Buchave, P, Leandersson, U, Nordstrom, L, Rydhstrom, H, and Sjolin, I
Source: Acta Obstetricia et Gynecologica Scandinavica, Vol 80, pp 311 – 314, 2001

Title: Immersion in water in the first stage of labour: a randomised controlled trial
Authors: Eckert, K, Turnbull, D, and MacLennan, A
Source: Birth, Volume 28, No 2, pp 84–93, June 2001

Title: Immersion in water during first stage of labour
Author: Homer, C
Source: Letter to the editor, Birth, Vol. 29, No 1, March, 2002

Title: Waterbirths: a comparative study. A prospective study on more than 2000 waterbirths Authors: Geissbuhler, V and Eberhard, J
Source: Foetal Diagnosis Therapy, Vol. 15, pp. 291 – 300, 2000
Title: Immersion in water in pregnancy, labour and birth Author: Nikodem, VC
Source: Cochrane Database Systematic Review, 2000

Title: Perinatal mortality and morbidity among babies delivered in water: surveillance study and postal survey
Authors: Gilbert, R and Tookey, P
Source: British Medical Journal, 319 (7208), pp. 483 – 487, 1999

Title: Birth under water – to breathe or not to breath
Author: Johnson, P
Source: British Journal of Obstetrics and Gynaecology, 103, 202-208, 1996

Title: Labour and birth in water: temperature of pool is important
Authors: Deans, AC and Steer, PJ
Source: British Medical Journal. 311:390-391, 1995

Title: Waterbirth – An attitude to care
Author: Garland, D
Source: Books for Midwives, 1995. Chesire

Title: Foetal hypothermia risk from warm water immersion
Author: Charles, C
Source: British Journal of Midwifery

The purpose of New Zealand College of Midwives Consensus Statements is to provide women, midwives and the maternity services with the profession’s position on any given situation.

The guidelines are designed to educate and support best practice.

All position statements are regularly reviewed and updated in line with evidence-based practice.

Watford General Hospital: Cleaning & disinfecting water birth pool and surrounding area

Watford General Hospital

Before use

The pool needs to be cleaned every 24 hours, as per instructions below. On completion The Pool Cleaning Record is signed by the member of staff performing the procedure.

Prior to each use and every 24 hours (to coincide with the daily pool cleaning), the pool taps need to be run for 2 minutes, as per water flushing guidelines.

After Use

1. Use the standard infection control precautions (plastic apron, disposable gloves and eye protection) when cleaning the pool. Ensure the area is well ventilated.

2. Remove any debris from the pool, using the sieve, before emptying the pool (to prevent debris blocking the pool outlet). Please ensure the thermometer has been removed from the pool prior to empyting the pool, in order not to block the pool outlet.

3. Use a non-abrasive detergeant to clean the pool of any further debris and blood; ensure the tap is cleaned first, so as not to transfer micro-organisms from the “dirty” pool area to the cleaner tap region. Please see guidance on cleaning sinks/basins and taps below. Rinse well with warm water.

4. Ensure the pool tap outlet is turned to “closed” prior to cleaning the pool tap and pool area with the chlorclean solution (2 tablets in 2 litres of cold water).

5. Clean the pool tap first prior to cleaning the pool with the chlorclean solution, as above.

6. When cleaning the pool itself, pour the chlorclean solution around the side of the pool. Using a clean disposable mop head/cloth, clean the surfaces of the pool and leave the solution in the pool for 10 minutes. Discard this mop head.

7. Open the tap outlet and empty the pool of the chlorclean solution.

8. Using cold water, rinse the tap then the pool to remove all traces of the chlorclean solution, to prevent any residue being left on the pool surface.

9. Dry the entire surface of the pool using a clean cloth or fresh disposable mop head. the pool is dried ensure the mop bucket asigned for cleaning the pool is cleaned and dried throroughly. Store it with the mop handle in room 8. Ensure all disposable mop heads used are disposed of in a yellow clinical waste bag.

11. Ensure the outside of the pool, window ledges, sink and its tap are cleaned with a chlorclean solution.

12. To clean the equipment (sieve, pool thermometer, mirror) used: wash and rinse these in warm water. Then soak for a minimum of 30 minutes in a chlorclean solution (2 chlorclean tablets in 2 litres of cold water), to cover equipment. After this, rinse and dry the equipment before placing these on a clean inco sheet on the top of the delivery box.

13. Finally, after the pool room has been restocked of equipment, towels, draw sheets etc, the floor is mopped using a chlorclean solution and a separate mop/bucket supplied by Medirest.

Guidance on cleaning of sinks/basins and taps in West Hertfordshire Hospitals NHS Trust
(to minimise risk of Pseudomonas aeruginosa)

Step 1 – cleaning the surrounding area

All basins, sinks and surrounding areas should e free from clutter and debris:

• Put on disposable gloves and apron
• Using a new disposable cloth and detergeant damp-clean the paper towel holder, then the soap dispenser, paying particular attention to theunderside of the soap dispensing unit, finishing with the nozzle.
• Then clean the underside of the sink/basin working from the higher level downwards.
• Carefully dispose of the cloth into the appropriate waste bag.
• Dry all surfaces with disposable cloth/towel as above.

Step 2 – Cleaning the wash-hand basin

• Using a new disposable cloth and sanitiser clean tap(s) first – start at the tap outlet end (do not put the cloth into the tap outlet), finish at the base and then clean tap handles.
• Then clean around the inside of the sink/basin from top rim of bowl, then overflow and waste outlet (do not put cloth into the overflow or waste outlet)
• Rinse as above
• Carefully dispose of cloth in appropriate waste bag.
• Dry all surfaces with disposable cloth/towel as above
• Dispose of gloves and apron in appropriate waste bag and decontaminate hands between the cleaning of each sink.

Shoulder dystocia at water birth

Nadine Massiah MBBS

Obstetrics and Gynaecology Department
Furness General Hospital
Barrow in Furness UK

Vincent Bamigboye MRCOG
Obstetrics and Gynaecology Department
Furness General Hospital
Barrow in Furness UK

Citation: N. Massiah & V. Bamigboye : Shoulder dystocia at water birth . The Internet Journal of Gynecology and Obstetrics. 2008 Volume 9 Number 1

Abstract

Health professionals providing obstetric care should be familiar with guidelines for shoulder dystocia. Regular drills are fundamental to the improvement of team work, enhancing communication skills and essential for good outcomes5.

Obstetric birthing simulators should be considered since they significantly improve competence in the management of shoulder dystocia6,7.

Learning and teaching are continuous processes in our practice. Optimal training is required to minimize morbidity and mortality of this obstetric complication.

Case Report

A 33 year old, para 1 lady presented in active labour at 40 weeks gestation. The abdominal findings were fundal height 39 cm, longitudinal lie and cephalic presentation.

Vaginal examination revealed cervical dilatation of 5 cm, occipito-anterior position of the foetal head at station minus two. The membranes were intact.

The booking investigations, dating and anomaly scans were found to be normal. The current pregnancy was uncomplicated. The first pregnancy and vaginal delivery were uneventful.

The pool was requested for labour and delivery. The labour progressed well to full dilatation. There was good descent of the head with active pushing. After delivery of the head, the shoulders were impacted. Mc Robert’s manoeuvre and suprapubic pressure were attempted without success.

The patient was moved from the birthing pool to the bed. Mc Robert’s manoeuvre, suprapubic pressure and downward traction of the head led to delivery of the anterior shoulder followed by the remainder of the body.

The time interval between the delivery of head and body was 3 minutes. The estimated blood loss was 350 mls. The neonate had a birth weight of 4200g with an Apgar score of 8, 9 and 10. Paediatric examination of the neonate was normal.

Discussion

The incidence of shoulder dystocia at water birth is 0.16%1. This case highlights that it is vital to be prepared for emergencies even with low risk women. They may occur in unfamiliar situations. Since the patient was wet, her safety whilst being moved to the bed was of great concern.

This was done carefully but quickly. It is estimated that the umbilical cord pH falls by 0.04 unit/min after delivery of the head2. A delay in delivery of the shoulders may result in cerebral hypoxia, cerebral palsy or death.

Forty seven percent of deaths from shoulder dystocia were within 5 minutes of delivery of the head3. The principles of management were widening of the pelvic diameters and repositioning the foetal shoulders into the oblique pelvic diameter to facilitate delivery4.

Health professionals providing obstetric care should be familiar with guidelines for shoulder dystocia.

Regular drills are fundamental to the improvement of team work, enhancing communication skills and essential for good outcomes5.

Obstetric birthing simulators should be considered since they significantly improve competence in the management of shoulder dystocia6,7.

Learning and teaching are continuous processes in our practice. Optimal training is required to minimize morbidity and mortality of this obstetric complication.

References

1. Thöni A, Zech N, Ploner F. Giving birth in the water: experience after 1,825 water deliveries. Retrospective descriptive comparison of water birth and traditional delivery methods. Gynäkologisch-geburtshilfliche Rundschau 2007; 47(2):76-80.

2. Wood C, Ng KH, Hounslow D, Benning H. Time – an important variable in normal delivery. Journal of obstetrics and gynaecology of the British Commonwealth 1973; 80(4):295-300.

3. Confidential Enquiries into Stillbirths and Deaths in Infancy. Fifth Annual Report. London: Maternal and Child Health Research Consortium, 1998. (s)

4. Draycott TJ, Fox R, Montague IA. Shoulder dystocia. RCOG Guideline No. 42. London:RCOG 2005.

5. Sorensen SS. Emergency drills in obstetrics: reducing risk of perinatal death or permanent injury. JONAS Healthcare Law Ethics and Regulation 2007; 9(1):9-16.

6. Deering S, Poggi S, Macedonia C, Gherman R, Satin AJ. Improving resident competency in the management of shoulder dystocia with simulation training. Obstetrics and Gynecology 2004;103(6):1224-8

7. Crofts JF, Bartlett C, Ellis D, Hunt LP, Fox R, Draycott TJ. Training for shoulder dystocia: a trial of simulation using low-fidelity and high-fidelity mannequins. Obstetrics and Gynecology 2006; 108(6):1477-85.

Guidelines for a safe water birth

Barbara Harper 2006

The aim of this guideline is to provide a review of information on labor and birth in water and to suggest possible strategies to minimize the potential hazards to mothers and infants.

It can also be used to promote the maternal and infant benefits, which may arise from choosing this type of birth experience, but are not easily quantifiable.

It is written with the belief that clinically sound, evidence based guidelines improve quality of care.

These recommendations are not intended to dictate an exclusive course of management or treatment.

They must be evaluated with reference to individual client’s needs, resources and limitations unique to the place of birth and variations in client choices.

Rationale

The therapeutic properties of warm water immersion have been known for centuries. Baths, showers and whirlpools have been used for comfort during labor for many years. Over the past two decades the use of warm water immersion for the birth of the baby has aroused interest in many countries and an increase in the number of women requesting this option for both hospital and out-of-hospital births is occurring.

Waterbirth International has reviewed the best available evidence and offers this guideline to assist midwives and women in their decision making process around the use of water immersion for labor and birth. The body of evidence is small but growing.

Evidence

Maternal and neonatal outcomes after water immersion for labor and birth have been assessed in two large surveys over a four year period in England and Wales (Alderdice, Renfrew & Marchant, 1995; Gilbert & Tookey, 1999) Researchers reviewed 4693 and 4032 births, respectively, where water immersion was used and found no difference in outcomes for women and their newborns compared to a cohort group of low risk women who did not use water.

The perinatal mortality rate for these births was comparable to other low risk births in the UK. (Gilbert and Tookey 1999). This study tried to estimate mortality and morbidity rates for babies delivered in water.

The data collected was compared to other sources of data providing similar estimates for babies delivered conventionally to low-risk women. They examined adverse outcomes, which were reported over a two-year period between 1994 and 1996 from approximately 4,000 births in water. 1500 consultant pediatricians were surveyed and asked to report any cases of baby deaths associated with waterbirth. None of the five perinatal deaths recorded among the waterbirths was attributable to delivery in water.

Admissions to special care baby units were slightly lower for the water-born babies than admissions for other low-risk babies. This was a landmark study in providing significant reassurance about the safety of waterbirth.

Other researchers (Burns 2001; Lenstrup et al, 1987; Rush et al,1996; & Waldenstrom et al, 1992) have made similar outcome reports. A recent Canadian randomized control trial reported women experienced less pain after water immersion than their non-immersion counterparts and over 80% of the water immersion group said they would use the tub in subsequent labors (Rush et al, 1996).

There have been a few highly controversial reports in the literature, especially in the journal Pediatrics on the negative effects of water immersion for babies. “Water Birth: a near drowning experience (Nuygen et al, 2002) suggests that every case of waterbirth should be evaluated as a possible fresh water drowning. The authors’ conclusions that the use of water for labor and birth may contribute to adverse outcomes should be viewed with considerable caution.

There are several methodological problems with this case study and these results are not congruent with the findings of many large trials. It is clear more research is needed into this form of care. But opinion pieces should be viewed at just that, opinion and not referred to as scientific or medical evaluation of the evidence.

In the absence of a substantial body of evidence on the use of warm water immersion for labor and birth, the potential advantages and disadvantages, which follow, are primarily derived from experience. This guideline will be updated as more evidence becomes available.

Eligibility

Water immersion for labor and birth should be available to all clients who request it, who have been screened and who have discussed the risks and benefits with their care provider. Some practices may choose to use a standard informed consent form for the use of warm water immersion.

Water Immersion Defined

Water immersion must be defined at providing a depth of water which enables the mother to sit in water that covers her belly completely and comes up to her breast level or kneel in water on her haunches which comes up to just below her breast level.

Any amount of water less than this does not constitute true immersion and will not create the buoyancy effect and produce the chemical and hormonal changes which enhance a more rapid labor. After an initial immersion of approximately thirty minutes the body responds by releasing more oxytocin, but only if the body experiences deep immersion, leading to buoyancy.

When to enter the bath in labor

It has been reported in the literature that labor slows down or stops if the woman enters the bath too soon. Guidelines were established to prevent a woman from entering the bath before the start of active labor, by definition: established labor pattern, dilation of the cervix to 4cm or greater and the need to concentrate during the contraction.

We argue that observation has led us to believe that a woman should be given the opportunity to use immersion as soon as her body and her brain have the desire to bathe. Women have been observed in very early labor relaxing, letting go of fear and progressing quickly to an active and pushing phase of their labor.

Using the water effectively often requires a “trial of water,” to see how the mother will respond. It has been noted with the advent of underwater continuous fetal monitoring that contraction patterns once thought to space out and become less frequent were in fact exactly the same in or out of the water. The mother’s response to those contractions in the water was vastly different from the response on the bed, thus making everyone believe that they were less intense.

The chemical and hormonal effects of immersion take effect after no less than twenty minutes and peak around ninety minutes. It is therefore suggested that a change of environment, such as getting out and walking be recommended after about two hours of initial immersion. The midwife can make an evaluation of the mother’s condition at that time.

Getting back in the water after thirty minutes will reactivate the chemical and hormonal process, including an sudden and often marked increase in oxytocin.
Dianne Garland, registered midwife, lead waterbirth researcher in England and the author of, ” Waterbirth: An Attitude to Care,” says the following:
” Just as labors can be slower or stop out of water so is true of water. Changes to the woman’s body are normal in labor and each of us will tolerate different lengths of first and second stage. Just as we all deal with different amounts of fatigue and stress, so each woman is individual and should be treated as such in labor.

The point of this with water labor and waterbirth is that as each woman is an individual, so her labor should be cared for, within the normal parameters set by ourselves as autonomous practitioners. Or within the maternity units where we work. Fundamental changes to normal practice may need to be made in units where active management of labor prevails.”

Summary of benefits for labor and birth in water

  • Facilitates mobility and enables the mother to assume any position which is comfortable for labor and pushing
  • Speeds up labor
  • Reduces blood pressure
  • Gives mother more feelings of control
  • Provides significant pain relief
  • Promotes relaxation
  • Conserves her energy
  • Reduces the need for drugs and interventions
  • Protects the mother from interventions by giving her a protected private space
  • Reduces perineal tearing
  • Reduces cesarean section rates
  • Is highly rated by mothers – typically stating they would consider giving birth in water again
  • Is highly rated by midwives
  • Encourages an easier birth for mother and a gentler welcome for baby

Theoretical Potential Disadvantages

  • Decrease in uterine contraction strength and frequency, especially if entering the bath too soon
  • Neonatal water aspiration
  • Maternal hyperthermia may contribute to fetal hypoxemia
  • Neonatal hypothermia
  • Cord immersion in warm water may delay vasoconstriction, increasing red cell transfusion to the newborn and promoting jaundice
  • Blood loss estimation and assessment not accurate
  • Maternal and Neonatal infection may be increase – not supported by the evidence
  • Risk of acquiring blood born infection or sustaining back injury for caregivers

    Recommended Criteria for the use of a water pool

  • An uncomplicated pregnancy of at least 37 weeks gestation
  • Established labor pattern – good regular contractions
  • Reassuring fetal heart tones
  • Absence of bleeding greater than bloody show
  • Spontaneous or on-going labor after misoprostol or Pitocin

    Contraindications for birth in a water pool

    There are no contraindications to labor in water, as evaluated by the literature and from experience. Immersion is a client/provider decision. Birth in water comes with a few “ABSOLUTE” contraindications and a few “CONTROVERSIAL” contraindications.

    Absolute contraindications

  • Pre-term labor
  • Excessive vaginal bleeding
  • maternal fever> 100.4, or suspected maternal infection
  • Any condition which requires continuous fetal heart rate monitoring
  • Untreated blood or skin infection
  • Sedation or epidural
  • Fearful Attendant
  • Inflexibility in the client

    Controversial contraindications

  • Meconium staining in amniotic fluid

    The presence of meconium should be evaluated with fetal well-being and taken by itself as a reason to ask the mother to leave the water. Meconium washes off the baby in the water. Baby can be suctioned as soon as it has been brought to the surface of the water. Some practices are now only limiting thick meconium cases.

  • HIV, Hepatitis A, B, C, GBS

    Evidence shows that HIV virus is susceptible to the warm water and cannot live in that environment. Proper cleaning of all equipment after the birth needs to be carried out. Hepatitis should be the discretion of the attending medical caregiver.
    There is absolutely no evidence that GBS positive cases should be asked to leave the water. Most hospitals allow IV antibiotic administration while in the water.

  • Herpes

    Some providers will cover the lesion, especially if it has peaked and is sloughing off. Others will require a cesarean. Some feel it is safer to deliver in the water due to the dilution effect of the water.

  • Breech or multiple births

    In the H. Surreys Hospital in Ostend, Belgium, frank breech is an indication for a waterbirth. Their vast experience has led them to believe that the absence of gravity, the warm water and the buoyancy create the perfect environment for a hands free breech birth. Labor in water for both breech and multiples is well documented and recommended. This should be a client/provider decision.

  • Shoulder Dystocia or Macrosomia with suspicion of Shoulder Dystocia

    This is usually considered an obstetric or midwifery emergency by most. Current protocols in most hospitals require the mother who is anticipating a large baby to leave the water. There is mounting evidence that providers find it is easier to assist a shoulder dystocia in the water. It is believed that tight shoulders happen more often because of mom or caregiver trying to push before the baby fully rotates. Better to wait a few contractions, with the head hanging in the water and allow baby to rotate. Because position changes in water are so much easier than dry land, a quick switch to hands and knees or even standing up with one foot on the edge of the pool helps to maneuver baby out. (research indicates that you can’t predict shoulder dystocia)

  • VBAC

    As the controversy over vaginal birth after previous cesarean section continues, it has been noted that mothers who labor for subsequent births have a much higher success rate in giving birth vaginally. Some hospitals refuse to allow women into the water because they don’t provide waterproof continuous fetal monitoring.

  • Intrathecal use

    A few hospitals will allow a mother into the water after receiving an intrathecal Monitoring of the baby is suggested as continuous, but some hospitals allow intermittent monitoring.

  • Induction or augmentation

    Many hospital practices will now allow mothers whose labors are initiated by Misoprostal or Pitocin to get in the pool as soon as a labor pattern is established.

    Some even allow mothers with a Pitocin drip to labor in water, as long as fetal heart rate assessment can be monitored with continuous underwater equipment.

  • Tight nucal cord

    Under no circumstances should the cord be clamped or cut under the water. Babies can be delivered through the cord and ‘unwound’ under the water. Be cautious of cord snapping.

  • Water temperature at time of birth

    Some providers will not allow women to birth in water that is lower than body temperature due to the possibility that the baby will attempt to inhale under the water from a change in temperature. There is no evidence that supports this theory, in fact there is more evidence that now shows that lower water temperatures increase the baby’s muscular activity and awareness.

    Water babies are slow to start breathing due to the delay in stimulation of the trigeminal nerve receptors in the face and around the nose and mouth. You must consider the birth of the baby from the time it leaves the water, not from the delivery of the baby into the water. German midwife, Cornelia Enning, states that babies are more vigorous at a temperature around 92-95 degrees Fahrenheit. If the mother is comfortable in the water, the temperature is OK for baby with only one restrictive parameter – NEVER higher than 100 degrees Fahrenheit.

  • Placental delivery in water

    There is no reason not to allow the birth of the placenta in water. Objections include inability to judge blood loss, possible water embolism and inability to contain all the by products of conception in one place. Evidence now shows that delivery of the placenta is safe, blood loss can be estimated by color evaluation and determination of where the bleeding is arising and there is absolutely no scientific basis for worry over water embolism. Placenta and pieces can be placed in a floating bowl in the water without difficulty. Cutting and clamping of the cord is not recommended with the delivery of the placenta in the water.

    Helpful reminders for the use of water immersion for labor and birth

  • Midwives should discuss the potential advantages and disadvantages of water immersion for labor and birth with each woman prior to labor.
  • The fetal heart should be monitored according to accepted guidelines. Use of a waterproof Doppler is recommended.
  • The woman should be encouraged to maintain adequate hydration and leave the pool to urinate at regular intervals.
  • The woman should be asked to leave the water if there are any concerns about her or her baby’s well being.
  • The water should be kept as clean as possible. Stool and blood clots should be removed from the pool immediately. The pool should be drained, cleaned and refilled if contaminants cannot be easily removed.
  • A small amount of blood often looks like a lot. Undisturbed blood in a pool often congeals at the bottom of the pool into a small clot.
  • The pool or tub should be deep enough for the mother to assume any position comfortably.
  • Encourage mother to help guide her own baby out.
  • Suturing may need to be delayed due to water saturation of tissues.
  • The baby should be born completely underwater with no air contact until the head is brought to the surface, as air and temperature change may stimulate breathing and lead to water aspiration. If a change in position during delivery causes the baby to come in contact with air, the birth should be finished in the air.
  • Care should be taken to avoid undue traction on the cord. There have been reports of cord tearing.
  • The warm water helps maintain the newborn’s temperature to prevent hypothermia. Keep baby submerged with head out only for best heat conservation. Next to mother is best.
  • Encourage breast contact immediately, but breastfeeding is not always possible in the water, especially due to water high water levels.
  • You can insert a footstool or other object (husband) to raise a mother up high enough after the birth.
  • Birth pools should be cleaned completely between uses with a chlorine-releasing agent. All pumps and hoses should also be rinsed with bleach.
  • Outdoor hot tubs are OK to use for labor and birth, if they are cleaned and maintained prior to the labor.
  • Jetted pools are ok to use if they are cleaned properly between patient use.
  • Small amounts of chlorine or bromine are not harmful to mothers or babiesAs when caring for any mother or newborn, the midwife is responsible for using her clinical judgment, responding appropriately to problems that may arise, and for documenting her actions.

    References

    Alderdice, R; Renfrew, M; & Marchant, S (1995) Labor and birth in water in England and Wales: Survey report. British Journal of Midwifery, 3. p 375 – 382.

    Balaskas, J (2004) The Water Birth Book. London: Thorsons.

    Beake, S. (1999) Water birth: a literature review. MIDIRS Midwifery Digest Vol 9 pp 473-477

    Burns, E. (2001) Waterbirth, MIDIRS Midwifery Digest, Supplement 2, S10 – S13.

    Burns, E & Kitzinger, S (2000) Midwifery Guidelines for Use of Water in Labor, Oxford Brookes University: Oxford.

    Eckert, K; Turnbull, D; MacLennan, A. (2001) Immersion in water in the first stage of labor; A randomized controlled trial. Birth, 28 (2) p 84-93.

    Enkin, Keirse, Neilson, Crowther, Duley, Hodnett and Hofmeyr (Eds) (2000) Control of Pain in Labour, in A Guide to Effective Care in Pregnancy and Childbirth Third Edition, Oxford University Press: Oxford.

    Enning, C. (2003). Waterbirth Midwifery: A training book. Hippokrates, Stuttgart, Germany

    Eriksson, M. Mattsson, L. Ladfors, L (1997 Sept) Early or late bath during the first stage of labour: a randomised study of 200 women. Midwifery, vol. 13 No 3 pp. 146-148

    Garland, D., Jones, K. (June, 1997). Waterbirth: updaing the evidence. British Journal of Midwifery Vol 5. No 6,368-373

    Garland, D. (Dec. 2002). Collaborative Waterbirth audit – “Supporting Practice with audit” MIDIRS Midwifery Digest, Vol 12, No 4, Dec 2002, pp 508-511

    Garland, D., Crook, S. (March 2004) Is the use of water in labour an option for women following a previous LSCS. MIDIRS Midwifery Digest Vol 14, No 1 pp 63-67

    Geissbuehler, V., Eberhard, J., (2000) Waterbirths: A comparative study, a prospective study on more than 2000 waterbirths. Fetal Diagnosis and Therapy Sept-Oct; 15(5):291-300

    Geissbuehler, V., Eberhard, J., Lebrecht, A., (2002) Waterbirth: Water temperature and bathing time – mother knows best! Journal of Perinatal Medicine 30(2002) 371-378

    Gilbert RE & Tookey PA (1999) Perinatal mortality and morbidity among babies delivered in water: Surveillance study and postal survey. British Medical Journal, 319(7208) p483-487.

    Harper, B (Summer 2000) Waterbirth Basics: from newborn breathing to hospital protocols. Midwifery Today, 54: 9-15, 68

    Harper, B (Dec 2002) Taking the plunge: reevaluating water temperature. MIDIRS Midwifery Digest, Vol 12, No 4, Dec 2002, pp 506-508

    Johnson, Paul. (1996). Birth under water-—to breathe or not to breathe. British Journal of Obstetrics and Gynaecology, 103: 202-208.

    Lenstrup, C., Schantz, A., Berget, A., Feder, A., Roseno, H. (1987) Warm tub bath during delivery. Acta Obstetrical Gynecology Scandinavia, 66, 709-12.

    Mackey, M. (2001), Use of Water in Labor and Birth, Clinical Obstetrics and Gynecology, Vol 44, No 4, pp 733-749

    Nikodem, VC Immersion in water in pregnancy, labour and birth. (Cochrane Review). In the Cochrane Library, issue 4, 2002. Oxford: Update Software

    Odent, M (1998 March) Use of water during labour – updated recommendations MIDIRS Midwifery Digest, Vol 8, No 1 pp 68-69

    Rush, J, Burlock, S. Lambert K (1996) The effect of whirlpool baths in labour: A randomized controlled trial. Birth, 23, p. 136-143.

    Waldenstrom U & Nilsson C. (1992) Warm tub bath after spontaneous rupture of the membranes. Birth, 19 p 57-62

    Waterbirth International (2004) unpublished Waterbirth Parent Survey, a retrospective analysis of over 3000 births in water.

Position Paper No 1a – The use of water in labour and birth

Immersion in water during labour was popularised as a formal method of analgesia by Odent in the 1970s (Beake 1999), and became widespread after the Winterton Report recommended that all maternity services provide women with the option to labour or deliver in water (House of Commons Health Committee, 1992).

As with all aspects of midwifery care, the use of water during labour and birth requires evaluation of associated benefits and risks, yet there are no large, collaborative, randomised controlled trials to date (Nikodem, 2000).

This paper clarifies the RCM’s position and recommendations to its members. It should be used in conjunction with local policies and guidelines.

Introduction It has been estimated that 50 per cent of maternity units now provide facilities for labour or birth in water, and that between 15% and 60% of the women attending those units choose to use these facilities.

The number of births occurring in water is much lower, however; between April 1994 and March 1996, a survey identified only 0.6% of births in England and Wales occurring in water, 9% of which were home births (Tookey and Gilbert, 1999).

These averages conceal wide variation, with some units passively or actively discouraging women from using water, while one birth centre reports up to 80% of women using water during labour, with up to 79% giving birth within the pool (Beech, 2000).

There is not enough evidence to evaluate the use of immersion in water during labour (Nikodem, 2000), but both potential benefits and adverse effects have been described in the literature. Beneficial effects include maternal relaxation, less painful contractions, shorter labours, less need for augmentation, less need for pharmacological analgesics, more intact perinea, and fewer episiotomies (Schorn et al, 1993; Garland and Jones, 2000).

Among the adverse effects discussed are unrealistic labour expectations, restricted mobility, infection, and the potential problem of the neonate inhaling water (Alderdice et al, 1995; McCandlish and Renfrew, 1993).

The systematic review produced by the Cochrane Library highlights that ‘although no significant adverse effects have been reported, the possibility of adverse outcome for the neonate should not be ignored’ (Nikodem, 2000).

There is clearly a need for more research, and midwives should give high priority to developing midwifery knowledge in this area. In the meantime, the available evidence does not justify discouraging women from choosing this increasingly popular option.

Women experiencing normal pregnancy, who choose to labour or deliver in water, should be given every opportunity and assistance to do so. RCM recommendations

1. All maternity units should develop policies and guidelines, underpinned by the available evidence, on the use of water in labour and birth. These should be developed in consultation with midwives, supervisors, and local user representatives.

2. Managers and supervisors should ensure that midwives acquire and sustain the competence, skills and confidence necessary to assist women who choose to labour or deliver in water (UKCC, 1992a; UKCC, 1992b; UKCC, 1998a).

3. Midwives should ensure they are competent to provide support to women who choose to use water, and should keep themselves updated on the research evidence in this area.

4. Midwives should audit and evaluate their practice, and the outcomes of labour and birth in water, in order to contribute to midwifery knowledge and the development of best practice.

5. All midwives should ensure their record keeping of labour and births in water is accurate and adheres to UKCC standards (UKCC, 1998b). Policies and guidelines for the use of water Every maternity unit should have, or should develop, policies and guidelines on the use of water in labour and birth.

These should be underpinned by the best available evidence, and should be developed in consultation with supervisors and user representatives. They should cover the following areas:

1. Professional expertise

The assistance of women to labour and deliver in water should be considered a core midwifery competence. However, some will have lacked experience in this area, and therefore appropriate education, training and supervision will be necessary. Continuing professional development in this area should be seen as a service requirement.

2. Information for choice

• All women should be offered information on the option of using water in labour and birth. There are no grounds for seeing this option as particularly suitable for, and acceptable to, certain groups of women on the basis of non-clinical criteria.

• All women who express an interest in the use of water should be given full verbal and written information, including where appropriate a copy of the unit’s policy. This should include any expectations of the woman (for example, on the supply of equipment), and what steps will be taken in the event of an emergency.

3. Criteria for use of water Criteria for use of water may include:

• Women’s informed choice
• Normal term pregnancy at 37+ weeks
• Singleton fetus with cephalic presentation
• No systemic sedation
• Spontaneous rupture of membranes < 24 hours Other non-clinical criteria – such as the availability of staff or equipment – may reasonably be deployed; however, as with all other areas of maternal choice, their obstruction of women’s informed decision-making should be actively kept to a minimum.

4. Equipment

• Local policies should specify essential and desirable equipment for the use of water, and make clear who is responsible for supplying it. • All unit equipment should conform to British Safety Standards, and be checked by the Health and Safety Officer (RCM, 1998). 5. Health and safety
• Local infection control policies should cover the use of water in labour and birth, and midwives should ensure they implement universal precautions (RCM, 1998).
• Specialist health and safety advice should be sought to develop policies on pool cleaning.
• Health and safety advice on moving and handling should be adhered to at all times (RCM, 1999).

6. Additional professional issues

• Temperature: All midwives should understand the physiological basis of maternal and fetal hyperthermia, local guidelines should specify target temperatures for the water during delivery and birth (Steer and Deans, 1995; Garland and Jones, 2000). Maternal, core water and room temperatures should all be checked regularly.

• Analgesia: Local guidelines for the use of additional pain relief should be developed in consultation with an anaesthetist, and discussed with all women prior to labour. These should cover all forms of pain relief, including complementary therapies.

• Birth: Local guidelines should be developed to guide midwives on best practice during delivery. These should be underpinned by the best available evidence (Nikodem, 2000).

• Emergencies: Local guidelines should detail what steps are expected in an emergency situation. All midwives, and all women using water for labour or birth, should know and understand these steps.

References

Alderdice F, Renfrew M, Marchant S, Ashurst H, Hughes P, Berridge G, Garcia J (1995) Labour and birth in water in England and Wales: survey report. British Journal of Midwifery 3(7): 376-382 Beake S (1999) Water birth: a literature review. MIDIRS Midwifery Digest 9(4): 473-477 Beech B (2000) Waterbirth: time to move forward. AIMS Journal 12(2): 1-2 Garland D and Jones K (2000) Waterbirth: supporting practice with clinical audit. MIDIRS Midwifery Digest 10(3): 333-336 House of Commons Health Committee (1992) Second Report on the Maternity Services (Winterton report). HMSO: London McCandlish R and Renfrew M (1993) Immersion in water during labour and birth: the need for evaluation. Birth 20(2): 79-85 Nikodem V (2000) Immersion in water in pregnancy, labour and birth (Cochrane Review). In: The Cochrane Library, Issue 2. Update Software: Oxford RCM (1998) Health and Safety Representatives’ Handbook. RCM: London RCM (1999) Handle With Care: a midwife’s guide to preventing back injury. RCM: London Schorn M, McAllister J, Blanco J (1993) Water immersion and the effect on labour. Journal of Nurse Midwifery 38(6): 336-342 Steer PJ and Deans AC (1995) Labour and birth in water: temperature of pool is important. British Medical Journal 311(7001): 390-1 Tookey P and Gilbert R (1999) Perinatal mortality and morbidity among babies delivered in water: surveillance study and postal survey. British Medical Journal 319(7208): 483-487 UKCC (1992a) Scope of Professional Practice. UKCC: London UKCC (1992b) Code of Professional Conduct. UKCC: London UKCC (1998a) Midwives Rules and Code of Practice. UKCC: London UKCC (1998b) Guidelines for records and record keeping. UKCC: London Further reading Brown L (1999) The Tide Has Turned: audit of water birth. British Journal of Midwifery 6(4): 236-43 Burns E and Kitzinger S (2000) Midwifery Guidelines for Use of Water in Labour. Oxford Brookes University: Oxford Jessiman C Byers H (2000) The Highland experience: immersion in water. British Journal of Midwifery 8(6): 357-361 Lawrence Beech BA (1996) Water Birth Unplugged: the proceedings of the first International Water Birth Conference. Books for Midwives Press: Cheshire UKCC (1994) Position Statement – Waterbirth. UKCC: London

Acknowledgements This paper was developed with the assistance of Dianne Garland (Practice Development Midwife, Maidstone), YP Choo (Labour Ward Co-ordinator, Chelsea and Westminster Hospital) and Mary Coe (Community Midwife, Southampton). October 2000 Royal College of Midwives